非洲爪蟾胚胎用于发育神经毒性测试的方法

付旭锋, 李圆圆, 崔清华, 秦占芬. 非洲爪蟾胚胎用于发育神经毒性测试的方法[J]. 环境化学, 2014, 33(10): 1710-1715. doi: 10.7524/j.issn.0254-6108.2014.10.009
引用本文: 付旭锋, 李圆圆, 崔清华, 秦占芬. 非洲爪蟾胚胎用于发育神经毒性测试的方法[J]. 环境化学, 2014, 33(10): 1710-1715. doi: 10.7524/j.issn.0254-6108.2014.10.009
FU Xufeng, LI Yuanyuan, CUI Qinghua, QIN Zhanfen. An assay for testing developmental neurotoxicity of chemicals using Xenopus laevis embryos[J]. Environmental Chemistry, 2014, 33(10): 1710-1715. doi: 10.7524/j.issn.0254-6108.2014.10.009
Citation: FU Xufeng, LI Yuanyuan, CUI Qinghua, QIN Zhanfen. An assay for testing developmental neurotoxicity of chemicals using Xenopus laevis embryos[J]. Environmental Chemistry, 2014, 33(10): 1710-1715. doi: 10.7524/j.issn.0254-6108.2014.10.009

非洲爪蟾胚胎用于发育神经毒性测试的方法

  • 基金项目:

    国家自然科学基金(21077125,31160237)资助.

An assay for testing developmental neurotoxicity of chemicals using Xenopus laevis embryos

  • Fund Project:
  • 摘要: 在美国材料与测试协会(ASTM)的非洲爪蟾胚胎致畸试验(FETAX)的基础上,以已知具有发育神经毒性的氯化甲基汞为模式化合物,探索一种以体征、运动神经元形态和运动行为参数为终点指标的研究发育神经毒性的方法.非洲爪蟾胚胎暴露氯化甲基汞3 d时,观察到暴露组胚胎的运动能力随暴露浓度(100—400 nmol·L-1)的增加而减弱.暴露4 d发现300 nmol·L-1和400 nmol·L-1暴露组胚胎体长和运动神经元明显短于对照组.暴露持续7 d,通过行为分析软件对蝌蚪运动行为定量,发现暴露处理的蝌蚪的游泳速率明显小于对照组.以上结果显示,非洲爪蟾胚胎可用来研究化学品的发育神经毒性,胚胎的体征、运动神经元形态和运动行为可以作为相对敏感的评价指标.
  • 加载中
  • [1] Quistad G B, Sparks S E, Casida J E. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides[J].Toxicology and Applied Pharmacology, 2001, 173(1): 48-55
    [2] Schantz S L. Developmental neurotoxicity of PCBs in humans: What do we know and where do we go from here?[J].Neurotoxicology and Teratology, 1996, 18(3): 217-227
    [3] Grandjean P, Landrigan P J. Developmental neurotoxicity of industrial chemicals[J].The Lancet, 2006, 368(9553): 2167-2178
    [4] Rice D C. Overview of modifiers of methylmercury neurotoxicity: chemicals, nutrients, and the social environment[J].Neurotoxicology, 2008, 29(5): 761-766
    [5] Vahidnia A, Van der Voet G B, De Wolff F A. Arsenic neurotoxicity—a review[J].Human & Experimental Toxicology, 2007, 26(10): 823-832
    [6] Lemos N B, Angeli J K, de Oliveira Faria T, et al. Low mercury concentration produces vasoconstriction, decreases nitric oxide bioavailability and increases oxidative stress in rat conductance artery[J].PloS One, 2012, 7(11): e49005
    [7] Virtanen J K, Rissanen T H, Voutilainen S, et al. Mercury as a risk factor for cardiovascular diseases[J].The Journal of Nutritional Biochemistry, 2007, 18(2): 75-85
    [8] Salonen J T, Seppänen K, Lakka T A, et al. Mercury accumulation and accelerated progression of carotid atherosclerosis: A population-based prospective 4-year follow-up study in men in eastern Finland[J].Atherosclerosis, 2000, 148(2): 265-273
    [9] Guideline OECD Test. 426[Z].OECD Guideline for Testing of Chemicals. Developmental Neurotoxicity Study. Organisation for Economic Co-operation and Development, Paris, France, 2007
    [10] Muth-Köhne E, Wichmann A, Delov V, et al. The classification of motor neuron defects in the zebrafish embryo toxicity test (ZFET) as an animal alternative approach to assess developmental neurotoxicity[J].Neurotoxicology and Teratology, 2012, 34(4): 413-424
    [11] Mandys V, Tureček R, Gispen W H, et al. Organotypic cultures of chick dorsal root ganglia in a semi-solid medium: A model for neurotoxicity testing[J].Toxicology in Vitro, 1994, 8(1): 81-90
    [12] Raftery T D, Isales G M, Yozzo K L, et al. High-content screening assay for identification of chemicals impacting spontaneous activity in zebrafish embryos[J].Environmental Science & Technology, 2014, 48(1):804-810
    [13] Roberts A, Walford A, Soffe S R, et al. Motoneurons of the axial swimming muscles in hatchling Xenopus tadpoles: Features, distribution, and central synapses[J].Journal of Comparative Neurology, 1999, 411(3): 472-486
    [14] Dichmann D S, Harland R M. Nkx6 genes pattern the frog neural plate and Nkx6.1 is necessary for motoneuron axon projection[J].Developmental Biology, 2011, 349(2): 378-386
    [15] American Society for Testing and Materials. ASTM E1439-98 Standard Guide for Conducting the Frog Embryo Teratogenesis Aaasy-Xenopus (FETAX)[S].Philadelphia: Annual Book of ASTM Standards, 2004
    [16] Nieuwkoop P D, Faber J. Normal table of Xenopus laevis (Daudin): A systematic and chronological survey of the development from the fertilized egg till the end of metamorphosis[M].Amsterdam: North-Holland Publishing Company, 1956
    [17] Guille M. Molecular methods in developmentals biology[M].Berlin: Springer, 1999
    [18]
    [19] Castoldi A F, Onishchenko N, Johansson C, et al. Neurodevelopmental toxicity of methylmercury: Laboratory animal data and their contribution to human risk assessment[J].Regulatory Toxicology and Pharmacology, 2008, 51(2): 215-229
    [20] Sobotka T J, Cook M P, Brodie R E. Effects of perinatal exposure to methyl mercury on functional brain development and neurochemistry[J].Biological Psychiatry, 1974, 8(3): 307-320
    [21] Samson J C, Goodridge R, Olobatuyi F, et al. Delayed effects of embryonic exposure of zebrafish ( Danio rerio) to methylmercury (MeHg)[J].Aquatic Toxicology, 2001, 51(4): 369-376
    [22] Radio N M, Mundy W R. Developmental neurotoxicity testing in vitro: Models for assessing chemical effects on neurite outgrowth[J].Neurotoxicology, 2008, 29(3): 361-376
    [23] Tamm C, Duckworth J, Hermanson O, et al. High susceptibility of neural stem cells to methylmercury toxicity: Effects on cell survival and neuronal differentiation[J].Journal of Neurochemistry, 2006, 97(1): 69-78
    [24] Zimmer B, Schildknecht S, Kuegler P B, et al. Sensitivity of dopaminergic neuron differentiation from stem cells to chronic low-dose methylmercury exposure[J].Toxicological Sciences, 2011, 121(2): 357-367
    [25] Wagner C, Vargas A P, Roos D H, et al. Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices[J].Archives of Toxicology, 2010, 84(2): 89-97
    [26] Taylor L L, DiStefano V. Effects of methylmercury on brain biogenic amines in the developing rat pup[J].Toxicology and Applied Pharmacology, 1976, 38(3): 489-497
    [27] Ososkov I, Weis J S. Development of social behavior in larval mummichogs after embryonic exposure to methylmercury[J].Transactions of the American Fisheries Society, 1996, 125(6): 983-987
    [28] Weis J S, Weis P. Effects of embryonic exposure to methylmercury on larval prey-capture ability in the mummichog, fundulus heteroclitus[J].Environmental Toxicology and Chemistry, 1995, 14(1): 153-156
    [29] Webber H M, Haines T A. Mercury effects on predator avoidance behavior of a forage fish, golden shiner (Notemigonus crysoleucas)[J].Environmental Toxicology and Chemistry, 2003, 22(7): 1556-1561
    [30] Onishchenko N, Tamm C, Vahter M, et al. Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice[J].Toxicological Sciences, 2007, 97(2): 428-437
    [31] Kato S, Nakagawa T, Ohkawa M, et al. A computer image processing system for quantification of zebrafish behavior[J].Journal of Neuroscience Methods, 2004, 134(1): 1-7
    [32] Kane A S, Salierno J D, Gipson G T, et al. A video-based movement analysis system to quantify behavioral stress responses of fish[J].Water Research, 2004, 38(18): 3993-4001
  • 加载中
计量
  • 文章访问数:  1814
  • HTML全文浏览数:  1814
  • PDF下载数:  820
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-05-24
付旭锋, 李圆圆, 崔清华, 秦占芬. 非洲爪蟾胚胎用于发育神经毒性测试的方法[J]. 环境化学, 2014, 33(10): 1710-1715. doi: 10.7524/j.issn.0254-6108.2014.10.009
引用本文: 付旭锋, 李圆圆, 崔清华, 秦占芬. 非洲爪蟾胚胎用于发育神经毒性测试的方法[J]. 环境化学, 2014, 33(10): 1710-1715. doi: 10.7524/j.issn.0254-6108.2014.10.009
FU Xufeng, LI Yuanyuan, CUI Qinghua, QIN Zhanfen. An assay for testing developmental neurotoxicity of chemicals using Xenopus laevis embryos[J]. Environmental Chemistry, 2014, 33(10): 1710-1715. doi: 10.7524/j.issn.0254-6108.2014.10.009
Citation: FU Xufeng, LI Yuanyuan, CUI Qinghua, QIN Zhanfen. An assay for testing developmental neurotoxicity of chemicals using Xenopus laevis embryos[J]. Environmental Chemistry, 2014, 33(10): 1710-1715. doi: 10.7524/j.issn.0254-6108.2014.10.009

非洲爪蟾胚胎用于发育神经毒性测试的方法

  • 1.  中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085;
  • 2.  云南大学生命科学学院, 昆明, 650091
基金项目:

国家自然科学基金(21077125,31160237)资助.

摘要: 在美国材料与测试协会(ASTM)的非洲爪蟾胚胎致畸试验(FETAX)的基础上,以已知具有发育神经毒性的氯化甲基汞为模式化合物,探索一种以体征、运动神经元形态和运动行为参数为终点指标的研究发育神经毒性的方法.非洲爪蟾胚胎暴露氯化甲基汞3 d时,观察到暴露组胚胎的运动能力随暴露浓度(100—400 nmol·L-1)的增加而减弱.暴露4 d发现300 nmol·L-1和400 nmol·L-1暴露组胚胎体长和运动神经元明显短于对照组.暴露持续7 d,通过行为分析软件对蝌蚪运动行为定量,发现暴露处理的蝌蚪的游泳速率明显小于对照组.以上结果显示,非洲爪蟾胚胎可用来研究化学品的发育神经毒性,胚胎的体征、运动神经元形态和运动行为可以作为相对敏感的评价指标.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回