低剂量Aroclor 1254和BDE-209单一和复合暴露的甲状腺干扰作用

徐海明, 王宏伟, 颜世帅, 秦占芬. 低剂量Aroclor 1254和BDE-209单一和复合暴露的甲状腺干扰作用[J]. 环境化学, 2014, 33(10): 1716-1722. doi: 10.7524/j.issn.0254-6108.2014.10.005
引用本文: 徐海明, 王宏伟, 颜世帅, 秦占芬. 低剂量Aroclor 1254和BDE-209单一和复合暴露的甲状腺干扰作用[J]. 环境化学, 2014, 33(10): 1716-1722. doi: 10.7524/j.issn.0254-6108.2014.10.005
XU Haiming, WANG Hongwei, YAN Shishuai, QIN Zhanfen. Thyroid-disrupting effects of single and combined exposure to Aroclor 1254 and BDE-209 at low concentrations[J]. Environmental Chemistry, 2014, 33(10): 1716-1722. doi: 10.7524/j.issn.0254-6108.2014.10.005
Citation: XU Haiming, WANG Hongwei, YAN Shishuai, QIN Zhanfen. Thyroid-disrupting effects of single and combined exposure to Aroclor 1254 and BDE-209 at low concentrations[J]. Environmental Chemistry, 2014, 33(10): 1716-1722. doi: 10.7524/j.issn.0254-6108.2014.10.005

低剂量Aroclor 1254和BDE-209单一和复合暴露的甲状腺干扰作用

  • 基金项目:

    国家自然科学基金项目(21377153

    20677074)资助.

Thyroid-disrupting effects of single and combined exposure to Aroclor 1254 and BDE-209 at low concentrations

  • Fund Project:
  • 摘要: 本文旨在探讨低剂量PCBs和PBDEs单一暴露和复合暴露的甲状腺干扰作用.非洲爪蟾46期蝌蚪单独或共暴露于100 ng·L-1 Aroclor 1254和BDE-209至62期.暴露结束后检测变态时间、甲状腺组织学结构、甲状腺相关基因表达水平等指标.结果发现, Aroclor 1254和BDE-209单独暴露使蝌蚪变态发育呈现一定的延迟趋势,而复合暴露却显著抑制蝌蚪变态发育;所有的暴露处理均导致蝌蚪甲状腺组织代偿性改变,表现为胶质面积减少,甲状腺滤泡上皮细胞高度显著增加;Aroclor 1254单独暴露显著抑制甲状腺激素受体(TRβA)、Ⅱ和Ⅲ型脱碘酶(DI-2,DI-3)的表达,BDE-209单独暴露仅抑制DI-2的表达,但BDE-209协同促进Aroclor 1254对肝脏内TRβA表达的抑制作用.综上,低剂量Aroclor 1254和BDE-209单独暴露和复合暴露对非洲爪蟾变态发育具有一定的甲状腺抑制作用,复合暴露的抑制作用明显高于单一暴露的作用.鉴于甲状腺系统在脊椎动物生长发育过程中的重要作用,低剂量PCBs和PBDEs复合暴露的甲状腺干扰效应应该受到格外关注.
  • 加载中
  • [1] Herbstman J B,Sjodin A,Apelberg B J,et al. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) and neonatal thyroid hormone levels[J].Environmental Health Perspectives,2008,116(10):1376-1382
    [2] Zhao X R,Qin Z F,Yang Z Z,et al. Dual body burdens of polychlorinated biphenyls and polybrominated diphenyl ethers among local residents in an e-waste recycling region in Southeast China[J].Chemosphere,2010,78(6):659-666
    [3] Boas M,Feldt-Rasmussen U,Skakkebaek N E,et al. Environmental chemicals and thyroid function[J].European Journal of Endocrinology,2006,154(5):599-611
    [4] McDonald T A. A perspective on the potential health risks of PBDEs[J].Chemosphere,2002,46(5):745-755
    [5] Opitz R,Braunbeck T,Bogi C,et al. Description and initial evaluation of a Xenopus metamorphosis assay for detection of thyroid system-disrupting activities of environmental compounds[J].Environmental Toxicology and Chemistry,2005,24(3):653-664
    [6] Organization for Economic Cooperation and Development. Guideline for the Testing of Chemicals: The Amphibian Metamorphosis Assay[R].OECD 231. Paris,France,2009
    [7] U.S. Environmental Protection Agency. Endocrine disruptor screening program test guidelines OPPTS 890.1100: Amphibian metamorphosis (Frog)[R].Washington,D.C., 2009
    [8] Coady K,Marino T,Thomas J,et al. Evaluation of the amphibian metamorphosis assay: Exposure to the goitrogen methimazole and the endogenous thyroid hormone L-thyroxine[J].Environmental Toxicology and Chemistry,2010,29(4):869-880
    [9] Grim K C,Wolfe M,Braunbeck T,et al. Thyroid histopathology assessments for the amphibian metamorphosis assay to detect thyroid-active substances[J].Toxicologic Pathology 2009,37(4):415-424
    [10] Shirey E A L,Langerveld A J,Mihalko D,et al. Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone system gene expression in developing Xenopus laevis[J].Environmental Research,2006,102(10):205-214
    [11] Balch G C,Velez-Espino L A,Sweet C,et al. Inhibition of metamorphosis in tadpoles of Xenopus laevis exposed to polybrominated diphenyl ethers (PBDEs)[J].Chemosphere,2006,64(2):328-338
    [12] Lou Q Q,Zhang Y F,Zhou Z,et al. Effects of perfluorooctanesulfonate and perfluorobutanesulfonate on the growth and sexual development of Xenopus laevis[J].Ecotoxicology,2013,22 (7):1133-1144
    [13] Morvan-Dubois G,Demeneix B A,Sachs L M. Xenopus laevis as a model for studying thyroid hormone signalling: From development to metamorphosis[J].Molecular and Cellular Endocrinology,2008,293 (1/2):71-79
    [14] Marsh-Armstrong N,Cai L Q,Brown D D. Thyroid hormone controls the development of connections between the spinal cord and limbs during Xenopus laevis metamorphosis[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(1):165-170
    [15] Opitz R,Hartmann S,Blank T,et al. Evaluation of histological and molecular endpoints for enhanced detection of thyroid system disruption in Xenopus laevis tadpoles[J].Toxicological Sciences,2006,90(2):337-348
    [16] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method[J].Methods,2001,25(4):402-408
    [17] Kilic N,Sandal S,Colakoglu N,et al. Endocrine disruptive effects of polychlorinated biphenyls on the thyroid gland in female rats[J].The Tohoku Journal of Experimental Medicine,2005,206(4):327-332
    [18] Gu J Y,Qian C H,Tang W,et al. Polychlorinated biphenyls affect thyroid function and induce autoimmunity in Sprague-Dawley rats[J].Hormone and Metabolic Research,2009,41(6):471-474
    [19] Manzon R G,Denver R J. Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: Negative feedback is functional throughout metamorphosis[J].The Journal of Endocrinology,2004,182(2):273-285
    [20] Helbing C C,Gergely G,Atkinson B G. Sequential up-regulation of thyroid hormone β receptor,ornthine transcarbamylase,and carbamyl phosphate synthetase mRNA in the liver of Rana catesbeiana tadpoles during spontaneous and thyroid hormone-induced metamorphosis[J].Developmental Genetics,1992,13(4):289-301
    [21] Iwamuro S,Yamada M,Kato M,et al. Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor alpha and beta and down-regulation of retinoid X receptor gamma in Xenopus tail culture[J].Life Sciences,2006,79(23):2165-2171
    [22] Qin X F,Xia X J,Yang Z Z,et al. Thyroid disruption by technical decabromodiphenyl ether (DE-83R) at low concentrations in Xenopus laevis[J].Journal of Environmental Sciences (China),2010,22(5):744-751
    [23] Iwasaki T,Miyazaki W,Takeshita A,et al. Polychlorinated bipbenyls suppress thyroid hormone-induced transactivation[J].Biochemical and Biophysical Research Communications,2002,299(3):384-388
    [24] Huang H,Cai L,Remo B F,et al. Timing of metamorphosis and the onset of the negative feedback loop between the thyroid gland and the pituitary is controlled by type Ⅱ iodothyronine deiodinase in Xenopus laevis[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(13):7348-7353
    [25] Brown D D,Wang Z,Furlow J D,et al. The thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(5):1924-1929
    [26] Morse D C,Wehler E K,Wesseling W,et al. Alterations in rat brain thyroid hormone status following pre- and postnatal exposure to polychlorinated biphenyls (Aroclor 1254)[J].Toxicology and Applied Pharmacology,1996,136(2):269-279
    [27] Heidtke T,Hartig J H,Zarull M A,et al. PCB levels and trends within the Detroit River-Western Lake Erie basin: A historical perspective of ecosystem monitoring[J].Environmental Monitoring and Assessment,2006,112(1/3):23-33
    [28] Hites R A. Polybrominated diphenyl ethers in the environment and in people: A meta-analysis of concentrations[J].Environment Science Technology,2004,38(4):945-956
    [29] Zhang Z L,Hong H S,Zhou J L,et al. Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary,Southeast China[J].Chemosphere,2003,52(9):1423-1430
    [30] Anderson T d,MacRae J D. Polybrominated diphenyl ethers in fish and wastewater samples from an area of the Penobscot River in central Maine[J].Chemosphere,2006,62(7):1153-1160
    [31] 赵兴茹. 卤代持久性有机污染物在非洲爪蟾体内的富集代谢及台州污染区居民暴露风险的初步研究[R]. 中国科学院化学研究所博士后出站报告,2007
    [32] 秦晓飞. 多溴二苯醚生物富集及生态毒理效应研究[D].北京:中国科学院生态环境研究中心博士学位论文, 2010
  • 加载中
计量
  • 文章访问数:  1674
  • HTML全文浏览数:  1674
  • PDF下载数:  478
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-05-18
徐海明, 王宏伟, 颜世帅, 秦占芬. 低剂量Aroclor 1254和BDE-209单一和复合暴露的甲状腺干扰作用[J]. 环境化学, 2014, 33(10): 1716-1722. doi: 10.7524/j.issn.0254-6108.2014.10.005
引用本文: 徐海明, 王宏伟, 颜世帅, 秦占芬. 低剂量Aroclor 1254和BDE-209单一和复合暴露的甲状腺干扰作用[J]. 环境化学, 2014, 33(10): 1716-1722. doi: 10.7524/j.issn.0254-6108.2014.10.005
XU Haiming, WANG Hongwei, YAN Shishuai, QIN Zhanfen. Thyroid-disrupting effects of single and combined exposure to Aroclor 1254 and BDE-209 at low concentrations[J]. Environmental Chemistry, 2014, 33(10): 1716-1722. doi: 10.7524/j.issn.0254-6108.2014.10.005
Citation: XU Haiming, WANG Hongwei, YAN Shishuai, QIN Zhanfen. Thyroid-disrupting effects of single and combined exposure to Aroclor 1254 and BDE-209 at low concentrations[J]. Environmental Chemistry, 2014, 33(10): 1716-1722. doi: 10.7524/j.issn.0254-6108.2014.10.005

低剂量Aroclor 1254和BDE-209单一和复合暴露的甲状腺干扰作用

  • 1.  中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085;
  • 2.  河北大学生命科学学院, 保定, 071002
基金项目:

国家自然科学基金项目(21377153

20677074)资助.

摘要: 本文旨在探讨低剂量PCBs和PBDEs单一暴露和复合暴露的甲状腺干扰作用.非洲爪蟾46期蝌蚪单独或共暴露于100 ng·L-1 Aroclor 1254和BDE-209至62期.暴露结束后检测变态时间、甲状腺组织学结构、甲状腺相关基因表达水平等指标.结果发现, Aroclor 1254和BDE-209单独暴露使蝌蚪变态发育呈现一定的延迟趋势,而复合暴露却显著抑制蝌蚪变态发育;所有的暴露处理均导致蝌蚪甲状腺组织代偿性改变,表现为胶质面积减少,甲状腺滤泡上皮细胞高度显著增加;Aroclor 1254单独暴露显著抑制甲状腺激素受体(TRβA)、Ⅱ和Ⅲ型脱碘酶(DI-2,DI-3)的表达,BDE-209单独暴露仅抑制DI-2的表达,但BDE-209协同促进Aroclor 1254对肝脏内TRβA表达的抑制作用.综上,低剂量Aroclor 1254和BDE-209单独暴露和复合暴露对非洲爪蟾变态发育具有一定的甲状腺抑制作用,复合暴露的抑制作用明显高于单一暴露的作用.鉴于甲状腺系统在脊椎动物生长发育过程中的重要作用,低剂量PCBs和PBDEs复合暴露的甲状腺干扰效应应该受到格外关注.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回