[1]
|
Quistad G B, Sparks S E, Casida J E. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides[J].Toxicology and Applied Pharmacology, 2001, 173(1): 48-55
|
[2]
|
Schantz S L. Developmental neurotoxicity of PCBs in humans: What do we know and where do we go from here?[J].Neurotoxicology and Teratology, 1996, 18(3): 217-227
|
[3]
|
Grandjean P, Landrigan P J. Developmental neurotoxicity of industrial chemicals[J].The Lancet, 2006, 368(9553): 2167-2178
|
[4]
|
Rice D C. Overview of modifiers of methylmercury neurotoxicity: chemicals, nutrients, and the social environment[J].Neurotoxicology, 2008, 29(5): 761-766
|
[5]
|
Vahidnia A, Van der Voet G B, De Wolff F A. Arsenic neurotoxicity—a review[J].Human & Experimental Toxicology, 2007, 26(10): 823-832
|
[6]
|
Lemos N B, Angeli J K, de Oliveira Faria T, et al. Low mercury concentration produces vasoconstriction, decreases nitric oxide bioavailability and increases oxidative stress in rat conductance artery[J].PloS One, 2012, 7(11): e49005
|
[7]
|
Virtanen J K, Rissanen T H, Voutilainen S, et al. Mercury as a risk factor for cardiovascular diseases[J].The Journal of Nutritional Biochemistry, 2007, 18(2): 75-85
|
[8]
|
Salonen J T, Seppänen K, Lakka T A, et al. Mercury accumulation and accelerated progression of carotid atherosclerosis: A population-based prospective 4-year follow-up study in men in eastern Finland[J].Atherosclerosis, 2000, 148(2): 265-273
|
[9]
|
Guideline OECD Test. 426[Z].OECD Guideline for Testing of Chemicals. Developmental Neurotoxicity Study. Organisation for Economic Co-operation and Development, Paris, France, 2007
|
[10]
|
Muth-Köhne E, Wichmann A, Delov V, et al. The classification of motor neuron defects in the zebrafish embryo toxicity test (ZFET) as an animal alternative approach to assess developmental neurotoxicity[J].Neurotoxicology and Teratology, 2012, 34(4): 413-424
|
[11]
|
Mandys V, Tureček R, Gispen W H, et al. Organotypic cultures of chick dorsal root ganglia in a semi-solid medium: A model for neurotoxicity testing[J].Toxicology in Vitro, 1994, 8(1): 81-90
|
[12]
|
Raftery T D, Isales G M, Yozzo K L, et al. High-content screening assay for identification of chemicals impacting spontaneous activity in zebrafish embryos[J].Environmental Science & Technology, 2014, 48(1):804-810
|
[13]
|
Roberts A, Walford A, Soffe S R, et al. Motoneurons of the axial swimming muscles in hatchling Xenopus tadpoles: Features, distribution, and central synapses[J].Journal of Comparative Neurology, 1999, 411(3): 472-486
|
[14]
|
Dichmann D S, Harland R M. Nkx6 genes pattern the frog neural plate and Nkx6.1 is necessary for motoneuron axon projection[J].Developmental Biology, 2011, 349(2): 378-386
|
[15]
|
American Society for Testing and Materials. ASTM E1439-98 Standard Guide for Conducting the Frog Embryo Teratogenesis Aaasy-Xenopus (FETAX)[S].Philadelphia: Annual Book of ASTM Standards, 2004
|
[16]
|
Nieuwkoop P D, Faber J. Normal table of Xenopus laevis (Daudin): A systematic and chronological survey of the development from the fertilized egg till the end of metamorphosis[M].Amsterdam: North-Holland Publishing Company, 1956
|
[17]
|
Guille M. Molecular methods in developmentals biology[M].Berlin: Springer, 1999
|
[18]
|
|
[19]
|
Castoldi A F, Onishchenko N, Johansson C, et al. Neurodevelopmental toxicity of methylmercury: Laboratory animal data and their contribution to human risk assessment[J].Regulatory Toxicology and Pharmacology, 2008, 51(2): 215-229
|
[20]
|
Sobotka T J, Cook M P, Brodie R E. Effects of perinatal exposure to methyl mercury on functional brain development and neurochemistry[J].Biological Psychiatry, 1974, 8(3): 307-320
|
[21]
|
Samson J C, Goodridge R, Olobatuyi F, et al. Delayed effects of embryonic exposure of zebrafish ( Danio rerio) to methylmercury (MeHg)[J].Aquatic Toxicology, 2001, 51(4): 369-376
|
[22]
|
Radio N M, Mundy W R. Developmental neurotoxicity testing in vitro: Models for assessing chemical effects on neurite outgrowth[J].Neurotoxicology, 2008, 29(3): 361-376
|
[23]
|
Tamm C, Duckworth J, Hermanson O, et al. High susceptibility of neural stem cells to methylmercury toxicity: Effects on cell survival and neuronal differentiation[J].Journal of Neurochemistry, 2006, 97(1): 69-78
|
[24]
|
Zimmer B, Schildknecht S, Kuegler P B, et al. Sensitivity of dopaminergic neuron differentiation from stem cells to chronic low-dose methylmercury exposure[J].Toxicological Sciences, 2011, 121(2): 357-367
|
[25]
|
Wagner C, Vargas A P, Roos D H, et al. Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices[J].Archives of Toxicology, 2010, 84(2): 89-97
|
[26]
|
Taylor L L, DiStefano V. Effects of methylmercury on brain biogenic amines in the developing rat pup[J].Toxicology and Applied Pharmacology, 1976, 38(3): 489-497
|
[27]
|
Ososkov I, Weis J S. Development of social behavior in larval mummichogs after embryonic exposure to methylmercury[J].Transactions of the American Fisheries Society, 1996, 125(6): 983-987
|
[28]
|
Weis J S, Weis P. Effects of embryonic exposure to methylmercury on larval prey-capture ability in the mummichog, fundulus heteroclitus[J].Environmental Toxicology and Chemistry, 1995, 14(1): 153-156
|
[29]
|
Webber H M, Haines T A. Mercury effects on predator avoidance behavior of a forage fish, golden shiner (Notemigonus crysoleucas)[J].Environmental Toxicology and Chemistry, 2003, 22(7): 1556-1561
|
[30]
|
Onishchenko N, Tamm C, Vahter M, et al. Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice[J].Toxicological Sciences, 2007, 97(2): 428-437
|
[31]
|
Kato S, Nakagawa T, Ohkawa M, et al. A computer image processing system for quantification of zebrafish behavior[J].Journal of Neuroscience Methods, 2004, 134(1): 1-7
|
[32]
|
Kane A S, Salierno J D, Gipson G T, et al. A video-based movement analysis system to quantify behavioral stress responses of fish[J].Water Research, 2004, 38(18): 3993-4001
|