[1]
|
张亚雷,章明,李建华,等.过氧化钙不同投加方式对底泥磷的释放的抑制效果分[J].环境科学,2006, 27(11): 2188-2193
|
[2]
|
Liu She Jiang, Jiang Bin, Huang Guo Qiang, et al. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier[J]. Water Research, 2006, 40: 3401-3408
|
[3]
|
Cassidy D P, Irvine R L. Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil[J]. Journal of Hazardous Materials, 1999, 69(1): 25-39
|
[4]
|
Kamiya H, Ishitobi Y, Inoue T, et al. Effluxes of dissolved organic phosphorus (DOP) and phosphate from the sediment to the overlying water at high temperature and low dissolved oxygen concentration conditions in a eutrophic brackish lake[J]. Japanese Journal of Limnology, 2001, 62(1): 11—21
|
[5]
|
张丹.CaO2对控制河道底泥磷释放效果的研究[J].环境工程,2012,30: 532-534
|
[6]
|
Kao C M, Chen S C, Su M C. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation[J]. Chemosphere, 2004, 44: 925-934
|
[7]
|
Borden R C, Goin R T, Kao C M, Control of BTEX migration using a biologically enhanced permeable barrier[J]. Ground Water Monitoring& Remediation, 2007, 17(1): 70-80
|
[8]
|
Kao C M. Bioremediation of BTEX contaminated aquifers using biologically active barriers. Raleigh, NC: North Carolina State University, 1993
|
[9]
|
Carberry J B, Yang S Y. Enhancement of PCB congener biodegradation by pre-oxidation with Fenton's reagent[J]. Water Science and Technology, 1994, 30 (7): 105-113
|
[10]
|
Aronstein B N, Rice L E. Biological and integrated chemical-biological treatment of PCB congeners in soil/sediment-containing systems[J]. Journal of Chemical Technology and Biotechnology, 1995, 63(4): 321-328
|
[11]
|
Northup A, Cassidy D. Calcium peroxide (CaO2) for use in modified Fenton chemistry[J]. Journal of Hazardous Materials, 2008, 152: 1164-1170
|
[12]
|
Arienzo M. Degradation of 2,4,6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound[J]. Chemosphere, 2000, 40: 331-337
|
[13]
|
Ndjou'ou A C, Cassidy D. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil[J]. Chemosphere, 2006, 65: 1610-1615
|
[14]
|
Bogan B W, Trbovic V, Paterek J R. Inclusion of vegetable oils in Fenton's chemistry for remediation of PAH-contaminated soils[J]. Chemosphere, 2003, 50: 15-21
|
[15]
|
Goi A, Trapido M. Chlorophenols contaminated soil remediation by peroxidation[J]. Journal of Advanced Oxidation Technology, 2010, 13: 50-58
|
[16]
|
Block P A, Brown R A, Robinson D. Novel activation technologies for sodium persulfate in situ chemical oxidation//Gavaskar A R, Chen A S C (Eds.). E-Proceedings of the International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Columbus Battle Press, OH, 2004
|
[17]
|
Fuessle R W, Taylor M A. Stabilization of arsenate wastes with prior oxidation[J]. Journal of Environmental Engineering, 2004, 130(9): 1063-1066
|
[18]
|
Bothe J V, Brown P W. Arsenic immobilization by calcium arsenate formation[J]. Environ Sci Technol, 1999, 33(21): 3806-3811
|
[19]
|
ITRC, Technical and Regulatory In situ Chemical Oxidation of Contaminated Soil and Groundwater, Technical/Regulatory Guidelines, ITRC Work Group and In situ Chemical Oxidation Work Team, USA,2005(3-7)
|
[20]
|
Tunnicliffe B S, Thomson N R. Mass removal of chlorinated ethenes from rough-walled fractures using permanganate[J]. Journal of Contaminant Hydrology, 2004, 75(1/2): 91-114
|
[21]
|
Mackinnon L K, Thomson N R. Laboratory-scale in situ chemical oxidation of a perchloroethylene pool using permanganate[J]. Journal of Contaminant Hydrology, 2002, 56:(49-74)
|
[22]
|
Suthersan S S, Payne F C. In situ Remediation Engineering[M]. CRC Press, USA, 2005
|
[23]
|
Bou-Nasr J, Cassidy D, Hampton D. Comparative study of the effect of four ISCO oxidants on PCE oxidation and aerobic microbial activity. Proceedings of the 5th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, 2006
|
[24]
|
Buda F, Ensing B, Gribnau C M, et al. O2 evolution in the Fenton reaction[J]. Chemistry-A European Journal, 2003, 9(14): 3436-3444
|
[25]
|
Watts R J, Foget M K, Kong S H, et al. Hydrogen peroxide decomposition in model subsurface systems[J]. Journal of Hazardous Materials, 1999, 69(2): 229-243
|
[26]
|
Xu P, Achari G, Mahmoud M, et al. Application of Fenton's reagent to remediate diesel contaminated soils[J]. Practice Periodical of Hazardous Toxic and Radioactive Waste Management, 2006,10: 19-27
|
[27]
|
Kao C M, Borden R C. Hydrocarbon Remediation[M]. Boca Raton, FL: Lewis Publishers, 1994
|
[28]
|
Chapman S W, Byerley B T, Smyth D J, et al. A pilot test of passine oxygen release for enhancement of in situ bioremediation of BTEX-contaminated ground water[J]. Groundwater Monitoring & Remediation, 1997, 17: 93-105
|
[29]
|
Chevalier L R, McCann C. Feasibility of calcium peroxide as an oxygen releasing compound in treatment walls[J]. International Journal of Environmental Waste Management, 2008, 2: 245-256
|
[30]
|
Zhang Wei-xian, Bethlehem. Preparation and use of nano size peroxide particles: US 0100928 A1, 2011
|
[31]
|
Qian Y, Zhou X, Zhang Y, et al. Performance and properties of nanoscale calcium peroxide for toluene removal[J]. Chemosphere, 2013.01.049
|
[32]
|
Kanel S R, Goswami R R, Clement T P, et al. Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media[J]. Environmental Scicence and Technology, 2008, 42(3): 896-900
|
[33]
|
Ehsan Olyaie, Hossein Banejad, Abbas Afkhami,et al. Development of a cost-effective technique to remove the arseniccontamination from aqueous solutions by calcium peroxide nanoparticles[J]. Separation and Purification Technology, 2012, 95: 10-15
|
[34]
|
Nicole C. Mueller, Bernd Nowack. Nanoparticles for remediation: Solving big problems with little particles[J]. Elements, 2010, 6: 395-400
|