[1]
|
Elimelech M, Mauter M S. Environmental applications of carbon-based nanomaterials[J]. Environ Sci Technol, 2008, 42(16): 5843-5859
|
[2]
|
Upadhyayula V K, Deng S, Mitchell M C, et al. Application of carbon nanotube technology for removal of contaminants in drinking water: A review[J]. Sci Total Environ, 2009, 408(1): 1-13
|
[3]
|
Valcárcel M, Cárdenas S, Simonet B M, et al. Carbon nanostructures as sorbent materials in analytical processes[J]. Trac-Trend Anal Chem, 2008, 27(1): 34-43
|
[4]
|
Sun Y, Stalcup A M. Mobile phase effects on retention on a new butylimidazolium-based high-performance liquid chromatographic stationary phase[J]. J Chromatogr A, 2006, 1126(1/2): 276-282
|
[5]
|
Dinh N P, Jonsson T, Irgum K. Probing the interaction mode in hydrophilic interaction chromatography[J]. J Chromatogr A, 2011, 1218(35): 5880-5891
|
[6]
|
Giacomelli L, Boggetti H, Agnelli H, et al. Factor analysis applied to the study of retention mechanism of nitroanilines in normal phase high performance liquid chromatography[J]. Analytica Chimica Acta, 1999, 402(1/2): 285-295
|
[7]
|
Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environ Sci Technol, 2008, 42(24): 9005-9013
|
[8]
|
Yang K, Xing B S. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application[J]. Chem Rev, 2010, 110(10): 5989-6008
|
[9]
|
Kah M, Zhang X, Jonker M T O, et al. Measuring and modeling adsorption of PAHs to carbon nanotubes over a six order of magnitude wide concentration range[J]. Environ Sci Technol, 2011, 45(14): 6011-6017
|
[10]
|
Shieh Y T, Liu G L, Wu H H, et al. Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media[J]. Carbon, 2007, 45(9): 1880-1890
|
[11]
|
Bui H, Masquelin T, Perun T, et al. Investigation of retention behavior of drug molecules in supercritical fluid chromatography using linear solvation energy relationships[J]. J Chromatogr A, 2008, 1206(2): 186-195
|
[12]
|
Fields P R, Sun Y, Stalcup A M. Application of a modified linear solvation energy relationship (LSER) model to retention on a butylimidazolium-based column for high performance liquid chromatography[J]. J Chromatogr A, 2011, 1218(3): 467-475
|
[13]
|
Taft R W, Abboud J L M, Kamlet M J, et al. Linear solvation energy Relations[J]. J Solution Chem, 1985, 14(3): 153-186
|
[14]
|
Liu Q, Sang WQ, Xu X M. Solvent effects on infrared spectra of 5-methyl-7-methoxy-iso-flavone in single solvent systems[J]. J Mol Struct, 2002, 608(2/3): 253-257
|
[15]
|
Bazek T, Kaliszan R, Novotna K, et al. Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model[J]. J Chromatogr A, 2005, 1075(1/2): 109-115
|
[16]
|
Klotz W L, Schure M R, Foley J P. Rapid estimation of octanol-water partition coefficients using synthesized vesicles in electrokinetic chromatography[J]. J Chromatogr A, 2002, 962(1/2): 207-219
|
[17]
|
Goss K U. Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER)[J]. Fluid Phase Equilibria, 2005, 233(1): 19-22
|
[18]
|
Dai J Y, Jin L J, Yao S C, et al. Prediction of partition coefficient and toxicity for benzaldehyde compounds by their capacity factors and various molecular descriptors[J]. Chemosphere, 2001, 42(8): 899-907
|
[19]
|
Ogden P B, Coym J W. Retention mechanism of a cholesterol-coated C18 stationary phase: van't Hoff and Linear Solvation Energy Relationships (LSER) approaches[J]. J Chromatogr A, 2011, 1218(20): 2936-2943
|
[20]
|
Berthod A, Mitchell C R, Armstrong D W. Could linear solvation energy relationships give insights into chiral recognition mechanisms? 1. Pi-pi and charge interaction in the reversed versus the normal phase mode[J]. J Chromatogr A, 2007, 1166(1/2): 61-69
|
[21]
|
Torres-Lapasió J R, Ruiz-ngel M J, García-lvarez-Coque M C, et al. Micellar versus hydro-organic reversed-phase liquid chromatography: A solvation parameter-based perspective[J]. J Chromatogr A, 2008, 1182(2): 176-196
|