[1]
|
Production and application of carbon nanotubes, carbon nanofibers, fullerenes, graphene and nanodiamonds: A global technology survey and market analysis .Innovative Research and Products, Inc.: Feb, 2011: 531
|
[2]
|
Mueller N C, Nowack B. Exposure modeling of engineered nanoparticles in the environment [J]. Environ Sci Technol, 2008, 42 (12): 4447-4453
|
[3]
|
Panessa-Warren B J, Maye M M, Warren J B, et al. Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure [J]. Environ Pollut, 2009, 157 (4): 1140-1151
|
[4]
|
Smith B, Wepasnick K, Schrote K E, et al. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: A structure-property relationship [J]. Langmuir, 2009, 25 (17): 9767-9776
|
[5]
|
Christian P, Von der Kammer F, Baalousha M, et al. Nanoparticles: Structure, properties, preparation and behaviour in environmental media [J]. Ecotoxicology, 2008, 17 (5): 326-343
|
[6]
|
Yang H, Li F, Shan C, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement [J]. Journal of Materials Chemistry, 2009, 19 (26): 4632-4638
|
[7]
|
Petersen E J, Akkanen J, Kukkonen J V K, et al. Biological uptake and depuration of carbon nanotubes by Daphnia magna [J]. Environ Sci Technol, 2009, 43 (8): 2969-2975
|
[8]
|
Zhang L, Petersen E J, Huang Q. Phase distribution of 14C-labeled multiwalled carbon nanotubes in aqueous systems containing model solids: Peat [J]. Environ Sci Technol, 2011, 45 (4): 1356-1362
|
[9]
|
Haddon R C. Chemistry of the fullerenes-the manifestation of strain in a class of continuous aromatic molecules [J]. Science, 1993, 261 (5128): 1545-1550
|
[10]
|
Niyogi S, Hamon M A, Hu H, et al. Chemistry of single-walled carbon nanotubes [J]. Accounts Chem Res, 2002, 35 (12): 1105-1113
|
[11]
|
Taylor R, Walton D R M. The chemistry of fullerenes [J]. Nature, 1993, 363 (6431): 685-693
|
[12]
|
Yao N, Lordi V, Ma S X C, et al. Structure and oxidation patterns of carbon nanotubes [J]. J Mater Res, 1998, 13 (9): 2432-2437
|
[13]
|
Haddon R C. Measure of nonplanarity in conjugated organic molecules-which structurally characterized molecule displays the highest degree of pyramidalization? [J]. J Am Chem Soc, 1990, 112 (9): 3385-3389
|
[14]
|
Srivastava D, Brenner D W, Schall J D, et al. Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: Kinky chemistry [J]. J Phys Chem B, 1999, 103 (21): 4330-4337
|
[15]
|
Suslick K S. The chemical effects of ultrasound [J]. Sci Am, 1989, 260 (2): 80-86
|
[16]
|
Banerjee S, Hemraj-Benny T, Wong S S. Covalent surface chemistry of single-walled carbon nanotubes [J]. Adv Mater, 2005, 17 (1): 17-29
|
[17]
|
Hirsch A. Functionalization of single-walled carbon nanotubes [J]. Angew Chem-Int Edit, 2002, 41 (11): 1853-1859
|
[18]
|
Johns J E, Hersam M C. Atomic covalent functionalization of graphene [J]. Accounts Chem Res, 2013, 46 (1): 77-86
|
[19]
|
Liu H T, Ryu S M, Chen Z Y, et al. Photochemical Reactivity of Graphene [J]. J Am Chem Soc, 2009, 131 (47): 17099-17101
|
[20]
|
Hiura H, Ebbesen T W, Fujita J, et al. Role of sp3 defect structures in graphite and carbon nanotubes [J]. Nature, 1994, 367 (6459): 148-151
|
[21]
|
Li W, Bai Y, Zhang Y K, et al. Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes [J]. Synth Met, 2005, 155 (3): 509-515
|
[22]
|
Monthioux M, Smith B W, Burteaux B, et al. Sensitivity of single-wall carbon nanotubes to chemical processing: An electron microscopy investigation [J]. Carbon, 2001, 39 (8): 1251-1272
|
[23]
|
Chiang I W, Brinson B E, Huang A Y, et al. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process) [J]. J Phys Chem B, 2001, 105 (35): 8297-8301
|
[24]
|
Hu H, Yu A P, Kim E, et al. Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes [J]. J Phys Chem B, 2005, 109 (23): 11520-11524
|
[25]
|
Liu J, Rinzler A G, Dai H J, et al. Fullerene pipes [J]. Science, 1998, 280 (5367): 1253-1256
|
[26]
|
Wang Z W, Shirley M D, Meikle S T, et al. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions [J]. Carbon, 2009, 47 (1): 73-79
|
[27]
|
Hiura H, Ebbesen T W, Tanigaki K. Opening and purification of carbon nanotubes in high yields [J]. Adv Mater, 1995, 7 (3): 275-276
|
[28]
|
Lin Y, Taylor S, Li H P, et al. Advances toward bioapplications of carbon nanotubes [J]. J Mater Chem, 2004, 14 (4): 527-541
|
[29]
|
Park H J, Park M, Chang J Y, et al. The effect of pre-treatment methods on morphology and size distribution of multi-walled carbon nanotubes [J]. Nanotechnology, 2008, 19 (33): Article #335702
|
[30]
|
Hwang K C. Efficient cleavage of carbon graphene layers by oxidants [J]. J. Chem. Soc Chem Commun, 1995, (2): 173-174
|
[31]
|
Saleh N B, Pfefferle L D, Elimelech M. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: Measurements and environmental implications [J]. Environ Sci Technol, 2008, 42 (21): 7963-7969
|
[32]
|
Smith B, Wepasnick K, Schrote K E, et al. Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes [J]. Environ Sci Technol, 2009, 43 (3): 819-825
|
[33]
|
Choi W, Lahiri I, Seelaboyina R, et al. Synthesis of graphene and its applications: A review [J]. Crit Rev Solid State Mat Sci, 2010, 35 (1): 52-71
|
[34]
|
Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nat Nanotechnol, 2009, 4 (4): 217-224
|
[35]
|
Si Y, Samulski E T. Synthesis of water soluble graphene [J]. Nano Lett, 2008, 8 (6): 1679-1682
|
[36]
|
Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide [J]. Carbon, 2008, 46 (14): 1994-1998
|
[37]
|
Cai W W, Piner R D, Stadermann F J, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J]. Science, 2008, 321 (5897): 1815-1817
|
[38]
|
He H Y, Klinowski J, Forster M, et al. A new structural model for graphite oxide [J]. Chem Phys Lett, 1998, 287 (1/2): 53-56
|
[39]
|
Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J Am Chem Soc, 1958, 80 (6): 1339-1339
|
[40]
|
Niyogi S, Bekyarova E, Itkis M E, et al. Solution properties of graphite and graphene [J]. J Am Chem Soc, 2006, 128 (24): 7720-7721
|
[41]
|
Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon, 2007, 45 (7): 1558-1565
|
[42]
|
Brant J A, Labille J, Bottero J Y, et al. Characterizing the impact of preparation method on fullerene cluster structure and chemistry [J]. Langmuir, 2006, 22: 3878
|
[43]
|
Duncan L K, Jinschek J R, Vikesland P J. C-60 colloid formation in aqueous systems: Effects of preparation method on size, structure, and surface charge [J]. Environ Sci Technol, 2008, 42: 173-178
|
[44]
|
Labille J, Masion A, Ziarelli F, et al. Hydration and dispersion of C60 in aqueous systems: The nature of water-fullerene interactions [J]. Langmuir, 2009, 25 (19): 11232-11235
|
[45]
|
Kong L, Tedrow O, Chan Y F, et al. Light-initiated transformations of fullerenol in aqueous media [J]. Environ Sci Technol, 2009, 43: 9155-9160
|
[46]
|
Lee J, Cho M, Fortner J D, et al. Transformation of aggregated C60 in the aqueous phase by UV irradiation [J]. Environ Sci Technol, 2009, 43: 4878-4883
|
[47]
|
Hou W-C, Jafvert C T. Photochemistry of aqueous C60 clusters: Evidence of 1O2 formation and its role in mediating C60 phototransformation [J]. Environ Sci Technol, 2009, 43: 5257-5262
|
[48]
|
Chen K L, Elimelech M. Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties [J]. Environ Sci Technol, 2009, 43 (19): 7270-7276
|
[49]
|
Chen K L, Smith B A, Ball W P, et al. Assessing the colloidal properties of engineered nanoparticles in water: Case studies from fullerene C-60 nanoparticles and carbon nanotubes [J]. Environ Chem, 2009, 7 (1): 10-27
|
[50]
|
Hemraj-Benny T, Bandosz T J, Wong S S. Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled carbon nanotubes [J]. J Colloid Interface Sci, 2008, 317 (2): 375-382
|
[51]
|
Wang Y H, Shan H W, Hauge R H, et al. A highly selective, one-pot purification method for single-walled carbon nanotubes [J]. J Phys Chem B, 2007, 111 (6): 1249-1252
|
[52]
|
Ying Y M, Saini R K, Liang F, et al. Functionalization of carbon nanotubes by free radicals [J]. Org Lett, 2003, 5 (9): 1471-1473
|
[53]
|
Fan C L, Li W, Li X, et al. Efficient photo-assisted Fenton oxidation treatment of multi-walled carbon nanotubes [J]. Chin Sci Bull, 2007, 52 (15): 2054-2062
|
[54]
|
Chen C Y, Jafvert C T. Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: Reactive oxygen species production in water [J]. Environ Sci & Technol, 2010, 44 (17): 6674-6679
|
[55]
|
Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes [J]. Science, 1998, 282 (5386): 95-98
|
[56]
|
Escobar M, Goyanes S, Corcuera M A, et al. Purification and functionalization of carbon nanotubes by classical and advanced oxidation processes [J]. J Nanosci Nanotechnol, 2009, 9 (10): 6228-6233
|
[57]
|
Kuznetsova A, Popova I, Yates J T, et al. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies [J]. J Am Chem Soc, 2001, 123 (43): 10699-10704
|
[58]
|
Park J, Yan M D. Covalent functionalization of graphene with reactive intermediates [J]. Accounts Chem. Res., 2013, 46 (1): 181-189
|
[59]
|
Schreiner K M, Filley T R, Blanchette R A, et al. White-rot basidiomycete-mediated decomposition of C-60 fullerol [J]. Environ Sci Technol, 2009, 43 (9): 3162-3168
|
[60]
|
Allen B L, Kichambare P D, Gou P, et al. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis [J]. Nano Lett, 2008, 8 (11): 3899-3903
|
[61]
|
Allen B L, Kotchey G P, Chen Y N, et al. Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes [J]. J Am Chem Soc, 2009, 131 (47): 17194-17205
|
[62]
|
Zhao Y, Allen B L, Star A. Enzymatic Degradation of Multiwalled Carbon Nanotubes [J]. J Phys Chem A, 2011, 115 (34): 9536-9544
|
[63]
|
Kagan V E, Konduru N V, Feng W H, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation [J]. Nat Nanotechnol, 2010, 5 (5): 354-359
|
[64]
|
Colosi L M, Burlingame D J, Huang Q, et al. Peroxidase-mediated removal of a polychlorinated biphenyl using natural organic matter as the sole cosubstrate [J]. Environ Sci Technol, 2007, 41 (3): 891-896
|
[65]
|
Huang Q G, Weber W J. Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: Efficacy, products, and pathways [J]. Environ Sci Technol, 2005, 39 (16): 6029-6036
|
[66]
|
Lu J, Huang Q, Mao L. Removal of acetaminophen using enzyme-mediated oxidative coupling processes: I. Reaction rates and pathways [J]. Environ Sci Technol, 2009, 43 (18): 7062-7067
|
[67]
|
Rinzler A G, Liu J, Dai H, et al. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization [J]. Appl Phys A-Mater Sci Process, 1998, 67 (1): 29-37
|
[68]
|
Chen X H, Chen C S, Chen Q, et al. Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD [J]. Mater Lett, 2002, 57 (3): 734-738
|
[69]
|
Kotchey G P, Allen B L, Vedala H, et al. The enzymatic oxidation of graphene oxide [J]. ACS Nano, 2011, 5 (3): 2098-2108
|
[70]
|
Templeton R C, Ferguson P L, Washburn K M, et al. Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod [J]. Environ Sci Technol, 2006, 40 (23): 7387-7393
|
[71]
|
Lovern S B, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles [J]. Environ. Toxicol. Chem, 2006, 25 (4): 1132-1137
|