碳纳米材料在环境中的转化

张礼文, 黄庆国, 毛亮. 碳纳米材料在环境中的转化[J]. 环境化学, 2013, 32(7): 1268-1276. doi: 10.7524/j.issn.0254-6108.2013.07.021
引用本文: 张礼文, 黄庆国, 毛亮. 碳纳米材料在环境中的转化[J]. 环境化学, 2013, 32(7): 1268-1276. doi: 10.7524/j.issn.0254-6108.2013.07.021
ZHANG Liwen, HUANG Qingguo, MAO Liang. The environmental transformation of carbon nanomaterials[J]. Environmental Chemistry, 2013, 32(7): 1268-1276. doi: 10.7524/j.issn.0254-6108.2013.07.021
Citation: ZHANG Liwen, HUANG Qingguo, MAO Liang. The environmental transformation of carbon nanomaterials[J]. Environmental Chemistry, 2013, 32(7): 1268-1276. doi: 10.7524/j.issn.0254-6108.2013.07.021

碳纳米材料在环境中的转化

  • 基金项目:

    U.S. EPA STAR GRANT R834094

    江苏省自然科学基金(BK2011576)

    高等学校博士学科点专项科研基金(新教师类)(20110091120036)资助.

The environmental transformation of carbon nanomaterials

  • Fund Project:
  • 摘要: 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯.随着碳纳米材料的研究和应用范围不断扩大,其对环境的影响和在环境中的行为也逐渐受到关注,而在环境中的转化是环境行为的一个重要方面.首先,环境转化会改变碳纳米材料的性质,从而影响其它行为如聚集沉降和生态毒性.同时,作为一种以碳为骨架的材料,能否被自然界转化、从而进入碳循环是评价碳纳米材料长期环境影响的必要信息.因此,本文重点总结了碳纳米材料在自然环境条件和水处理条件下可能发生的生物或非生物转化,并分析影响碳纳米材料转化的因素,和转化过程对其环境行为的影响.
  • 加载中
  • [1] Production and application of carbon nanotubes, carbon nanofibers, fullerenes, graphene and nanodiamonds: A global technology survey and market analysis .Innovative Research and Products, Inc.: Feb, 2011: 531
    [2] Mueller N C, Nowack B. Exposure modeling of engineered nanoparticles in the environment [J]. Environ Sci Technol, 2008, 42 (12): 4447-4453
    [3] Panessa-Warren B J, Maye M M, Warren J B, et al. Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure [J]. Environ Pollut, 2009, 157 (4): 1140-1151
    [4] Smith B, Wepasnick K, Schrote K E, et al. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: A structure-property relationship [J]. Langmuir, 2009, 25 (17): 9767-9776
    [5] Christian P, Von der Kammer F, Baalousha M, et al. Nanoparticles: Structure, properties, preparation and behaviour in environmental media [J]. Ecotoxicology, 2008, 17 (5): 326-343
    [6] Yang H, Li F, Shan C, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement [J]. Journal of Materials Chemistry, 2009, 19 (26): 4632-4638
    [7] Petersen E J, Akkanen J, Kukkonen J V K, et al. Biological uptake and depuration of carbon nanotubes by Daphnia magna [J]. Environ Sci Technol, 2009, 43 (8): 2969-2975
    [8] Zhang L, Petersen E J, Huang Q. Phase distribution of 14C-labeled multiwalled carbon nanotubes in aqueous systems containing model solids: Peat [J]. Environ Sci Technol, 2011, 45 (4): 1356-1362
    [9] Haddon R C. Chemistry of the fullerenes-the manifestation of strain in a class of continuous aromatic molecules [J]. Science, 1993, 261 (5128): 1545-1550
    [10] Niyogi S, Hamon M A, Hu H, et al. Chemistry of single-walled carbon nanotubes [J]. Accounts Chem Res, 2002, 35 (12): 1105-1113
    [11] Taylor R, Walton D R M. The chemistry of fullerenes [J]. Nature, 1993, 363 (6431): 685-693
    [12] Yao N, Lordi V, Ma S X C, et al. Structure and oxidation patterns of carbon nanotubes [J]. J Mater Res, 1998, 13 (9): 2432-2437
    [13] Haddon R C. Measure of nonplanarity in conjugated organic molecules-which structurally characterized molecule displays the highest degree of pyramidalization? [J]. J Am Chem Soc, 1990, 112 (9): 3385-3389
    [14] Srivastava D, Brenner D W, Schall J D, et al. Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: Kinky chemistry [J]. J Phys Chem B, 1999, 103 (21): 4330-4337
    [15] Suslick K S. The chemical effects of ultrasound [J]. Sci Am, 1989, 260 (2): 80-86
    [16] Banerjee S, Hemraj-Benny T, Wong S S. Covalent surface chemistry of single-walled carbon nanotubes [J]. Adv Mater, 2005, 17 (1): 17-29
    [17] Hirsch A. Functionalization of single-walled carbon nanotubes [J]. Angew Chem-Int Edit, 2002, 41 (11): 1853-1859
    [18] Johns J E, Hersam M C. Atomic covalent functionalization of graphene [J]. Accounts Chem Res, 2013, 46 (1): 77-86
    [19] Liu H T, Ryu S M, Chen Z Y, et al. Photochemical Reactivity of Graphene [J]. J Am Chem Soc, 2009, 131 (47): 17099-17101
    [20] Hiura H, Ebbesen T W, Fujita J, et al. Role of sp3 defect structures in graphite and carbon nanotubes [J]. Nature, 1994, 367 (6459): 148-151
    [21] Li W, Bai Y, Zhang Y K, et al. Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes [J]. Synth Met, 2005, 155 (3): 509-515
    [22] Monthioux M, Smith B W, Burteaux B, et al. Sensitivity of single-wall carbon nanotubes to chemical processing: An electron microscopy investigation [J]. Carbon, 2001, 39 (8): 1251-1272
    [23] Chiang I W, Brinson B E, Huang A Y, et al. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process) [J]. J Phys Chem B, 2001, 105 (35): 8297-8301
    [24] Hu H, Yu A P, Kim E, et al. Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes [J]. J Phys Chem B, 2005, 109 (23): 11520-11524
    [25] Liu J, Rinzler A G, Dai H J, et al. Fullerene pipes [J]. Science, 1998, 280 (5367): 1253-1256
    [26] Wang Z W, Shirley M D, Meikle S T, et al. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions [J]. Carbon, 2009, 47 (1): 73-79
    [27] Hiura H, Ebbesen T W, Tanigaki K. Opening and purification of carbon nanotubes in high yields [J]. Adv Mater, 1995, 7 (3): 275-276
    [28] Lin Y, Taylor S, Li H P, et al. Advances toward bioapplications of carbon nanotubes [J]. J Mater Chem, 2004, 14 (4): 527-541
    [29] Park H J, Park M, Chang J Y, et al. The effect of pre-treatment methods on morphology and size distribution of multi-walled carbon nanotubes [J]. Nanotechnology, 2008, 19 (33): Article #335702
    [30] Hwang K C. Efficient cleavage of carbon graphene layers by oxidants [J]. J. Chem. Soc Chem Commun, 1995, (2): 173-174
    [31] Saleh N B, Pfefferle L D, Elimelech M. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: Measurements and environmental implications [J]. Environ Sci Technol, 2008, 42 (21): 7963-7969
    [32] Smith B, Wepasnick K, Schrote K E, et al. Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes [J]. Environ Sci Technol, 2009, 43 (3): 819-825
    [33] Choi W, Lahiri I, Seelaboyina R, et al. Synthesis of graphene and its applications: A review [J]. Crit Rev Solid State Mat Sci, 2010, 35 (1): 52-71
    [34] Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nat Nanotechnol, 2009, 4 (4): 217-224
    [35] Si Y, Samulski E T. Synthesis of water soluble graphene [J]. Nano Lett, 2008, 8 (6): 1679-1682
    [36] Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide [J]. Carbon, 2008, 46 (14): 1994-1998
    [37] Cai W W, Piner R D, Stadermann F J, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J]. Science, 2008, 321 (5897): 1815-1817
    [38] He H Y, Klinowski J, Forster M, et al. A new structural model for graphite oxide [J]. Chem Phys Lett, 1998, 287 (1/2): 53-56
    [39] Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J Am Chem Soc, 1958, 80 (6): 1339-1339
    [40] Niyogi S, Bekyarova E, Itkis M E, et al. Solution properties of graphite and graphene [J]. J Am Chem Soc, 2006, 128 (24): 7720-7721
    [41] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon, 2007, 45 (7): 1558-1565
    [42] Brant J A, Labille J, Bottero J Y, et al. Characterizing the impact of preparation method on fullerene cluster structure and chemistry [J]. Langmuir, 2006, 22: 3878
    [43] Duncan L K, Jinschek J R, Vikesland P J. C-60 colloid formation in aqueous systems: Effects of preparation method on size, structure, and surface charge [J]. Environ Sci Technol, 2008, 42: 173-178
    [44] Labille J, Masion A, Ziarelli F, et al. Hydration and dispersion of C60 in aqueous systems: The nature of water-fullerene interactions [J]. Langmuir, 2009, 25 (19): 11232-11235
    [45] Kong L, Tedrow O, Chan Y F, et al. Light-initiated transformations of fullerenol in aqueous media [J]. Environ Sci Technol, 2009, 43: 9155-9160
    [46] Lee J, Cho M, Fortner J D, et al. Transformation of aggregated C60 in the aqueous phase by UV irradiation [J]. Environ Sci Technol, 2009, 43: 4878-4883
    [47] Hou W-C, Jafvert C T. Photochemistry of aqueous C60 clusters: Evidence of 1O2 formation and its role in mediating C60 phototransformation [J]. Environ Sci Technol, 2009, 43: 5257-5262
    [48] Chen K L, Elimelech M. Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties [J]. Environ Sci Technol, 2009, 43 (19): 7270-7276
    [49] Chen K L, Smith B A, Ball W P, et al. Assessing the colloidal properties of engineered nanoparticles in water: Case studies from fullerene C-60 nanoparticles and carbon nanotubes [J]. Environ Chem, 2009, 7 (1): 10-27
    [50] Hemraj-Benny T, Bandosz T J, Wong S S. Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled carbon nanotubes [J]. J Colloid Interface Sci, 2008, 317 (2): 375-382
    [51] Wang Y H, Shan H W, Hauge R H, et al. A highly selective, one-pot purification method for single-walled carbon nanotubes [J]. J Phys Chem B, 2007, 111 (6): 1249-1252
    [52] Ying Y M, Saini R K, Liang F, et al. Functionalization of carbon nanotubes by free radicals [J]. Org Lett, 2003, 5 (9): 1471-1473
    [53] Fan C L, Li W, Li X, et al. Efficient photo-assisted Fenton oxidation treatment of multi-walled carbon nanotubes [J]. Chin Sci Bull, 2007, 52 (15): 2054-2062
    [54] Chen C Y, Jafvert C T. Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: Reactive oxygen species production in water [J]. Environ Sci & Technol, 2010, 44 (17): 6674-6679
    [55] Chen J, Hamon M A, Hu H, et al. Solution properties of single-walled carbon nanotubes [J]. Science, 1998, 282 (5386): 95-98
    [56] Escobar M, Goyanes S, Corcuera M A, et al. Purification and functionalization of carbon nanotubes by classical and advanced oxidation processes [J]. J Nanosci Nanotechnol, 2009, 9 (10): 6228-6233
    [57] Kuznetsova A, Popova I, Yates J T, et al. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies [J]. J Am Chem Soc, 2001, 123 (43): 10699-10704
    [58] Park J, Yan M D. Covalent functionalization of graphene with reactive intermediates [J]. Accounts Chem. Res., 2013, 46 (1): 181-189
    [59] Schreiner K M, Filley T R, Blanchette R A, et al. White-rot basidiomycete-mediated decomposition of C-60 fullerol [J]. Environ Sci Technol, 2009, 43 (9): 3162-3168
    [60] Allen B L, Kichambare P D, Gou P, et al. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis [J]. Nano Lett, 2008, 8 (11): 3899-3903
    [61] Allen B L, Kotchey G P, Chen Y N, et al. Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes [J]. J Am Chem Soc, 2009, 131 (47): 17194-17205
    [62] Zhao Y, Allen B L, Star A. Enzymatic Degradation of Multiwalled Carbon Nanotubes [J]. J Phys Chem A, 2011, 115 (34): 9536-9544
    [63] Kagan V E, Konduru N V, Feng W H, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation [J]. Nat Nanotechnol, 2010, 5 (5): 354-359
    [64] Colosi L M, Burlingame D J, Huang Q, et al. Peroxidase-mediated removal of a polychlorinated biphenyl using natural organic matter as the sole cosubstrate [J]. Environ Sci Technol, 2007, 41 (3): 891-896
    [65] Huang Q G, Weber W J. Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: Efficacy, products, and pathways [J]. Environ Sci Technol, 2005, 39 (16): 6029-6036
    [66] Lu J, Huang Q, Mao L. Removal of acetaminophen using enzyme-mediated oxidative coupling processes: I. Reaction rates and pathways [J]. Environ Sci Technol, 2009, 43 (18): 7062-7067
    [67] Rinzler A G, Liu J, Dai H, et al. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization [J]. Appl Phys A-Mater Sci Process, 1998, 67 (1): 29-37
    [68] Chen X H, Chen C S, Chen Q, et al. Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD [J]. Mater Lett, 2002, 57 (3): 734-738
    [69] Kotchey G P, Allen B L, Vedala H, et al. The enzymatic oxidation of graphene oxide [J]. ACS Nano, 2011, 5 (3): 2098-2108
    [70] Templeton R C, Ferguson P L, Washburn K M, et al. Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod [J]. Environ Sci Technol, 2006, 40 (23): 7387-7393
    [71] Lovern S B, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles [J]. Environ. Toxicol. Chem, 2006, 25 (4): 1132-1137
  • 加载中
计量
  • 文章访问数:  1607
  • HTML全文浏览数:  1544
  • PDF下载数:  1387
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-02-27
张礼文, 黄庆国, 毛亮. 碳纳米材料在环境中的转化[J]. 环境化学, 2013, 32(7): 1268-1276. doi: 10.7524/j.issn.0254-6108.2013.07.021
引用本文: 张礼文, 黄庆国, 毛亮. 碳纳米材料在环境中的转化[J]. 环境化学, 2013, 32(7): 1268-1276. doi: 10.7524/j.issn.0254-6108.2013.07.021
ZHANG Liwen, HUANG Qingguo, MAO Liang. The environmental transformation of carbon nanomaterials[J]. Environmental Chemistry, 2013, 32(7): 1268-1276. doi: 10.7524/j.issn.0254-6108.2013.07.021
Citation: ZHANG Liwen, HUANG Qingguo, MAO Liang. The environmental transformation of carbon nanomaterials[J]. Environmental Chemistry, 2013, 32(7): 1268-1276. doi: 10.7524/j.issn.0254-6108.2013.07.021

碳纳米材料在环境中的转化

  • 1.  University of Georgia, Griffin, GA, U.S., 30223;
  • 2.  南京大学环境学院, 南京, 210093
基金项目:

U.S. EPA STAR GRANT R834094

江苏省自然科学基金(BK2011576)

高等学校博士学科点专项科研基金(新教师类)(20110091120036)资助.

摘要: 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯.随着碳纳米材料的研究和应用范围不断扩大,其对环境的影响和在环境中的行为也逐渐受到关注,而在环境中的转化是环境行为的一个重要方面.首先,环境转化会改变碳纳米材料的性质,从而影响其它行为如聚集沉降和生态毒性.同时,作为一种以碳为骨架的材料,能否被自然界转化、从而进入碳循环是评价碳纳米材料长期环境影响的必要信息.因此,本文重点总结了碳纳米材料在自然环境条件和水处理条件下可能发生的生物或非生物转化,并分析影响碳纳米材料转化的因素,和转化过程对其环境行为的影响.

English Abstract

参考文献 (71)

返回顶部

目录

/

返回文章
返回