感潮珠江原水臭氧氧化副产物BrO3-预测模型的建立
Modeling of bromate formation during ozonation process of surface water in the Pearl River Basin affected by seawater intrusion
-
摘要: 以珠江流域西江中山段的感潮原水为对象,模拟其臭氧预处理、常规处理和臭氧活性炭处理,考察原水预、主臭氧对应投加量时溴酸盐生成情况,构建了预、主臭氧溴酸盐生成经验预测模型.结果表明,在预臭氧过程中,高的DOC、O3及Br-浓度,会增加溴酸盐的生成量,升高pH,提高NH3-N及IC有利于抑制溴酸盐的形成;在主臭氧过程中,升高pH,提高O3及Br-浓度,会增加溴酸盐的生成量,而高的DOC、NH3-N及IC会降低溴酸盐的形成风险.所建模型预测实际水样,发现预、主臭氧预测模型预测误差分别为33.72%和13.22%.Abstract: In this study, by selecting the raw water of Xijiang Zhongshan section of the Pearl River Basin affected by seawater intrusion and simulating the processes of preozonation, general treatment, postozonation and GAC, the bromate formation of different ozone dosages and modeling of bromate formation during preozonation and later ozonation process was studied. The results show that during preozonation process, high concentrations of DOC, O3 and Br- in raw water, lead to more generation of bromate, while pH,NH3-N and IC can suppress bromate formation under cetain conditions. During postozonation process, bromate concentration increases increases of pH value, ozone and bromine concentration, but high concentrations of DOC, NH3-N and IC reduce the risk of the bromate formation. For predicting water samples, the forecast errors of the formation modelings during preozonation process and later qzonation process are 33.72% and 13.22%, respectively.
-
Key words:
- drinking water /
- bromate /
- modeling /
- ozonation
-
-
[1] Neal C, Neal Mt, Hughes S, et al. Bromine and bromide in rainfall, cloud, stream and groundwater in the Plynlimon Area of Mid-Wales[J]. Hydrol Earth Syst Sci, 2007, 11(1):301-312 [2] 陈国光, 童俊, 朱慧峰,等. 高溴离子原水深度处理溴酸盐的控制与对策[J]. 给水排水, 2012, 38(3):20-22 [3] 赵玉丽, 李杏放. 饮用水消毒副产物: 化学特性与毒性[J].环境化学,2011,30(1): 20-33 [4] Ozekin K,. Modelling bromate formation during ozonation and assessing its control. University of Colorado, USA, 1994 [5] Song RG, Donohoe C, Minear R, et al. Empirical modeling of bromate formation during ozonation of bromide-containing waters[J], Water Res, 1996, 30(5):1161-1168 [6] Siddiqui M, Amy G, Ozekin K, et al. Empirically and theoretically based models for predicting brominated ozonated by-products[J]. Ozone: Sci Eng 1994;16:157-178 [7] Tyrovola K Diamadopoulos E. Bromate formation during ozonation of groundwater in coastal areas in Greece[J]. Desalination, 2005, 176: 201-209 [8] 罗琳, 陈举, 杨威,等. 2007—2008年冬季珠江三角洲强咸潮事件[J]. 热带海洋学报, 2010, 29(6):22-28 [9] 刘勇建, 牟世芬. 离子色谱法在测定饮用水中痕量溴酸盐标准方法中的应用[J]. 环境化学, 2002,21(2):203-204 [10] 何茹, 鲁金凤, 马军,等. 臭氧催化氧化控制溴酸盐生成效能与机理[J]. 环境科学,2008,29(1):99-103 [11] 刘利兵, 庞月红, 钱和,等. 饮用水臭氧消毒副产物——溴酸盐产生机理及影响因素研究进展[J]. 南水北调与水利科技, 2010,8(3):52-54 [12] 鲁金凤,张勇,王艺,等. 溴酸盐的形成机制与控制方法研究进展[J]. 水处理技术, 2010,36(11):5-10 [13] Peter J, Simon A P, Rosie S. Modeling bromate formation during ozonation [J]. Ozone: Sci & Eng, 2007, 29: 429-442 [14] Kazi Z A H, Kevin C B, Christopher M M. Numerical simulation of bromate formation during ozonation of bromide [J]. J Environ Eng, 2003, 129(11):991-998 [15] [16] 李继, 董文艺, 贺彬. 臭氧投加方式对溴酸盐生成量的影响[J]. 中国给水排水, 2005, 21(4):8-11 -

计量
- 文章访问数: 829
- HTML全文浏览数: 798
- PDF下载数: 450
- 施引文献: 0