临安本底站大气气溶胶水溶性离子浓度变化特征

徐宏辉, 刘洁, 王跃思, 毛敏娟, 蒲静姣. 临安本底站大气气溶胶水溶性离子浓度变化特征[J]. 环境化学, 2012, 31(6): 796-802.
引用本文: 徐宏辉, 刘洁, 王跃思, 毛敏娟, 蒲静姣. 临安本底站大气气溶胶水溶性离子浓度变化特征[J]. 环境化学, 2012, 31(6): 796-802.
XU Honghui, LIU Jie, WANG Yuesi, MAO Minjuan, PU Jingjiao. Variation pattern of water-soluble ions in atmospheric aerosol at Lin'an regional background station[J]. Environmental Chemistry, 2012, 31(6): 796-802.
Citation: XU Honghui, LIU Jie, WANG Yuesi, MAO Minjuan, PU Jingjiao. Variation pattern of water-soluble ions in atmospheric aerosol at Lin'an regional background station[J]. Environmental Chemistry, 2012, 31(6): 796-802.

临安本底站大气气溶胶水溶性离子浓度变化特征

  • 基金项目:

    国家自然科学基金项目(40805054)

    浙江省自然科学基金(Y5100107)

    中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室共同资助.

Variation pattern of water-soluble ions in atmospheric aerosol at Lin'an regional background station

  • Fund Project:
  • 摘要: 为研究我国长江三角洲地区气溶胶污染的区域特征,2008年4月、7月、10月和2009年1月,在临安区域本底站利用安德森(Andersen)分级采样器进行了大气气溶胶采样,样品用离子色谱(IC)进行了分析.结果表明,临安区域本底站SO42-、NH4+、K+的浓度在粒径0.43—1.1 μm出现峰值;Ca2+、Mg2+的浓度在粒径3.3—5.8 μm出现峰值;NO3-、Cl-、Na+的浓度在粒径0.43—1.1 μm和3.3—5.8 μm出现峰值.气溶胶各个粒径段上的阳、阴离子电荷比均小于2.在降水过程个例分析中,降水之后临安区域本底站的总离子浓度增加了10.9 μg·m-3;粒径分布除SO42-和K+有明显变化以外,其它离子没有明显变化.通过霾日和非霾日的浓度变化分析发现,细粒子中SO42-、NH4+的浓度的增加是造成霾天气的主要原因.
  • 加载中
  • [1] 金均,吴建,蔡菊珍,等.杭州市灰霾天气基本特征及成因分析[J]. 环境污染与防治,2010,32 (5):61-67
    [2] 杨卫芬,银燕,魏玉香,等.霾天气下南京PM2.5中金属元素污染特征及来源分析[J]. 中国环境科学,2010,30 (1):12-17
    [3] 牛彧文,顾骏强,浦静姣,等.浙江城市区域灰霾天气的长期变化[J]. 热带气象学报,2010,26 (6):807-812
    [4] Yao X H, Chan C K, Fang M,et al. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China [J]. Atmospheric Environment, 2002, 36 (26): 4223-4234
    [5] 赵亚南,王跃思,温天雪,等.长白山PM2.5中水溶性无机离子观测研究[J]. 环境化学,2011,30 (4):812-815
    [6] 谢鹏,霍铭群,孙倩,等.大气颗粒物酸性研究[J]. 环境化学,2009,28 (5):626-629
    [7] Acker K, Mertes S, Mller D, et al. Case study of cloud physical and chemical processes in low clouds at Mt. Brocken [J]. Atmospheric Research, 2002, 64: 41-51
    [8] 杨东贞,颜鹏,张养梅,等.WMO区域本底站气溶胶特征分析[J]. 第四纪研究,2006,26 (5):733-741
    [9] 颜鹏,毛节泰,杨东贞,等. 临安一次沙尘暴过程影响气溶胶物理化学特性演变的初步分析[J]. 第四纪研究, 2004, 24 (7):437-446
    [10] 张养梅,颜鹏,杨东贞,等.临安大气气溶胶理化特性季节变化[J]. 应用气象学报,2007,18 (5):635-644
    [11] 徐宏辉,王跃思,温天雪,等.北京大气气溶胶中水溶性离子的粒径分布和垂直分布[J]. 环境科学,2007,28 (1):14-19
    [12] 宋宇,唐孝炎,方晨,等.北京市大气细粒子的来源分析[J]. 环境科学,2002,23 (6):11-16
    [13] Wang Ying, Zhuang Guoshun, Tang Aohan, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing [J]. Atmospheric Environment, 2005, 39: 3771-3784
    [14] Zhang D, Iwasaka Y. Nitrate and sulphate in individual Asian dust-storm particles in Beijing, China in spring of 1995 and 1996 [J]. Atmospheric Environment, 1999, 33: 3213-3223
    [15] Yao X H, Lau A P S, Fang M, et al. Size distribution and formation of ionic species in atmospheric particulate pollutants in Beijing, China:1-inorganic ions [J]. Atmospheric Environment, 2003, 37: 2991-3000
  • 加载中
计量
  • 文章访问数:  1130
  • HTML全文浏览数:  1066
  • PDF下载数:  631
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-08-24
徐宏辉, 刘洁, 王跃思, 毛敏娟, 蒲静姣. 临安本底站大气气溶胶水溶性离子浓度变化特征[J]. 环境化学, 2012, 31(6): 796-802.
引用本文: 徐宏辉, 刘洁, 王跃思, 毛敏娟, 蒲静姣. 临安本底站大气气溶胶水溶性离子浓度变化特征[J]. 环境化学, 2012, 31(6): 796-802.
XU Honghui, LIU Jie, WANG Yuesi, MAO Minjuan, PU Jingjiao. Variation pattern of water-soluble ions in atmospheric aerosol at Lin'an regional background station[J]. Environmental Chemistry, 2012, 31(6): 796-802.
Citation: XU Honghui, LIU Jie, WANG Yuesi, MAO Minjuan, PU Jingjiao. Variation pattern of water-soluble ions in atmospheric aerosol at Lin'an regional background station[J]. Environmental Chemistry, 2012, 31(6): 796-802.

临安本底站大气气溶胶水溶性离子浓度变化特征

  • 1.  浙江省气象科学研究所, 杭州, 310017;
  • 2.  中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室, 北京, 100029;
  • 3.  浙江省气象局, 杭州, 310002
基金项目:

国家自然科学基金项目(40805054)

浙江省自然科学基金(Y5100107)

中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室共同资助.

摘要: 为研究我国长江三角洲地区气溶胶污染的区域特征,2008年4月、7月、10月和2009年1月,在临安区域本底站利用安德森(Andersen)分级采样器进行了大气气溶胶采样,样品用离子色谱(IC)进行了分析.结果表明,临安区域本底站SO42-、NH4+、K+的浓度在粒径0.43—1.1 μm出现峰值;Ca2+、Mg2+的浓度在粒径3.3—5.8 μm出现峰值;NO3-、Cl-、Na+的浓度在粒径0.43—1.1 μm和3.3—5.8 μm出现峰值.气溶胶各个粒径段上的阳、阴离子电荷比均小于2.在降水过程个例分析中,降水之后临安区域本底站的总离子浓度增加了10.9 μg·m-3;粒径分布除SO42-和K+有明显变化以外,其它离子没有明显变化.通过霾日和非霾日的浓度变化分析发现,细粒子中SO42-、NH4+的浓度的增加是造成霾天气的主要原因.

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回