空气清新剂中挥发性有机物的组成及其对室内空气质量的潜在影响

付晓辛, 王新明, Francois Bernard. 空气清新剂中挥发性有机物的组成及其对室内空气质量的潜在影响[J]. 环境化学, 2012, 31(2): 243-248.
引用本文: 付晓辛, 王新明, Francois Bernard. 空气清新剂中挥发性有机物的组成及其对室内空气质量的潜在影响[J]. 环境化学, 2012, 31(2): 243-248.
FU Xiaoxin, WANG Xinming, Francois Bernard. Volatile organic compounds in air fresheners and their potential impacts on indoor air quality[J]. Environmental Chemistry, 2012, 31(2): 243-248.
Citation: FU Xiaoxin, WANG Xinming, Francois Bernard. Volatile organic compounds in air fresheners and their potential impacts on indoor air quality[J]. Environmental Chemistry, 2012, 31(2): 243-248.

空气清新剂中挥发性有机物的组成及其对室内空气质量的潜在影响

  • 基金项目:

    国家自然科学基金-广东省联合基金(U0833003)和国家自然科学基金(41025012)资助.

Volatile organic compounds in air fresheners and their potential impacts on indoor air quality

  • Fund Project:
  • 摘要: 研究调查了广州市各大型超市销售的14个品牌,15种不同香型,共26个盒装空气清新剂中挥发性有机物(VOCs)的成分.通过顶空GC-MS分析获得的结果可以看出各个空气清新剂的成分组成差别较大,即使是相同香型的产品,其中的化合物种类和百分比浓度都不尽相同.定性出94种化合物,包括烯烃18种,醇类15种,醛类14种,酮类4种,醚类5种,酚类1种,酯类25种及其它化合物12种, 其中萜类化合物约占总化合物数量的40%.β-月桂烯、罗勒烯、苧烯、苯乙醇、乙酸苄酯、β-蒎烯、β-水芹烯、伞花烃、1-甲基-4-(1-甲基乙烯基)苯、里拉醇等化合物在各种清新剂中出现频率为100%.空气清新剂中萜类化合物与臭氧反应,可生成二次有机气溶胶,对室内空气质量造成影响.
  • 加载中
  • [1] Cooper S D, Raymer J H, Pellizzari E D, et al. The identification of polar organic-compounds found in consumer products and their toxicological properties[J]. Journal of Exposure Analysis and Environmental Epidemiology, 1995, 5(1): 57-75
    [2] Rastogi S C, Heydorn S, Johansen J D, et al. Fragrance chemicals in domestic and occupational products[J]. Contact Dermatitis, 2001, 45(4): 221-225
    [3] Kwon K D, Jo W K, Lim H J, et al. Characterization of emissions composition for selected household products available in Korea[J]. Journal of Hazardous Materials, 2007, 148(1/2): 192-198
    [4] Nazaroff W W, Weschler C J. Cleaning products and air fresheners: exposure to primary and secondary air pollutants[J]. Atmospheric Environment, 2004, 38(18): 2841-2865
    [5] Liu X Y, Mason M, Krebs K, et al. Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone[J]. Environmental Science Technology, 2004, 38(10): 2802-2812
    [6] Fan Z H, Lioy P, Weschler C, et al. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions[J]. Environmental Science Technology, 2003, 37(9): 1811-1821
    [7] Li T H, Turpin B J, Shields H C, et al. Indoor hydrogen peroxide derived from ozone/d-limonene reactions[J]. Environmental Science Technology, 2002, 36(15): 3295-3302
    [8] Weschler C J, Shields H C. Measurements of the hydroxyl radical in a manipulated but realistic indoor environment[J]. Environmental Science Technology, 1997, 31(12): 3719-3722
    [9] Sarwar G, Olson D A, Corsi R L, et al. Indoor fine particles: The role of terpene emissions from consumer products[J]. Journal of the Air Waste Management Association, 2004, 54(3): 367-377
    [10] Wolkoff P, Schneider T, Kildeso J, et al. Risk in cleaning: chemical and physical exposure[J]. Science of the Total Environment, 1998, 215(1/2): 135-156
    [11] Sarwar G, Corsi R, Allen D, et al. The significance of secondary organic aerosol formation and growth in buildings: experimental and computational evidence[J]. Atmospheric Environment, 2003, 37(9/10): 1365-1381
    [12] Destaillats H, Lunden M M, Singer B C, et al. Indoor secondary pollutants from household product emissions in the presence of ozone: A bench-scale chamber study[J]. Environmental Science Technology, 2006, 40(14): 4421-4428
    [13] Long C M, Suh H H, Koutrakis P. Characterization of indoor particle sources using continuous mass and size monitors[J]. Journal of the Air Waste Management Association, 2000, 50(7): 1236-1250
    [14] Bridges B. Fragrance: emerging health and environmental concerns[J]. Flavour and Fragrance Journal, 2002, 17(5): 361-371
    [15] Wang T, Wei X L, Ding A J, et al. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994—2007[J]. Atmospheric Chemistry and Physics, 2009, 9(16): 6216-6226
    [16] Weschler C J. Ozone in indoor environments: Concentration and chemistry[J]. Indoor Air-International Journal of Indoor Air Quality and Climate, 2000, 10(4): 269-288
    [17] Weschler C J, Shields H C. Indoor ozone/terpene reactions as a source of indoor particles[J]. Atmospheric Environment, 1999, 33(15): 2301-2312
    [18] Ongwandee M, Moonrinta R, Panyametheekul S, et al. Investigation of volatile organic compounds in office buildings in Bangkok, Thailand: Concentrations, sources, and occupant symptoms[J]. Building and Environment, 2011, 46(7): 1512-1522
    [19] Wainman T, Zhang J F, Weschler C J, et al. Ozone and limonene in indoor air: A source of submicron particle exposure[J]. Environmental Health Perspectives, 2000, 108(12): 1139-1145
    [20] Bonn B, Moortgat G K. Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons[J]. Geophysical Research Letters, 2003, 30(11), 1585, doi:10.1029/2003GL017000
  • 加载中
计量
  • 文章访问数:  1423
  • HTML全文浏览数:  1334
  • PDF下载数:  422
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-04-15
付晓辛, 王新明, Francois Bernard. 空气清新剂中挥发性有机物的组成及其对室内空气质量的潜在影响[J]. 环境化学, 2012, 31(2): 243-248.
引用本文: 付晓辛, 王新明, Francois Bernard. 空气清新剂中挥发性有机物的组成及其对室内空气质量的潜在影响[J]. 环境化学, 2012, 31(2): 243-248.
FU Xiaoxin, WANG Xinming, Francois Bernard. Volatile organic compounds in air fresheners and their potential impacts on indoor air quality[J]. Environmental Chemistry, 2012, 31(2): 243-248.
Citation: FU Xiaoxin, WANG Xinming, Francois Bernard. Volatile organic compounds in air fresheners and their potential impacts on indoor air quality[J]. Environmental Chemistry, 2012, 31(2): 243-248.

空气清新剂中挥发性有机物的组成及其对室内空气质量的潜在影响

  • 1. 中国科学院广州地球化学研究所有机地球化学国家重点实验室, 广州, 510640
基金项目:

国家自然科学基金-广东省联合基金(U0833003)和国家自然科学基金(41025012)资助.

摘要: 研究调查了广州市各大型超市销售的14个品牌,15种不同香型,共26个盒装空气清新剂中挥发性有机物(VOCs)的成分.通过顶空GC-MS分析获得的结果可以看出各个空气清新剂的成分组成差别较大,即使是相同香型的产品,其中的化合物种类和百分比浓度都不尽相同.定性出94种化合物,包括烯烃18种,醇类15种,醛类14种,酮类4种,醚类5种,酚类1种,酯类25种及其它化合物12种, 其中萜类化合物约占总化合物数量的40%.β-月桂烯、罗勒烯、苧烯、苯乙醇、乙酸苄酯、β-蒎烯、β-水芹烯、伞花烃、1-甲基-4-(1-甲基乙烯基)苯、里拉醇等化合物在各种清新剂中出现频率为100%.空气清新剂中萜类化合物与臭氧反应,可生成二次有机气溶胶,对室内空气质量造成影响.

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回