响应面法优化Fenton氧化处理高浓度丙烯酸废水
OPTIMIZATION OF HIGH-CONCENTRATION ACRYLIC ACID WASTEWATER TREATMENT BY FENTON OXIDATION USING RESPONSE SURFACE METHODOLOGY
-
摘要: 以模拟丙烯酸废水为研究对象,选择过氧化氢加入量、催化剂用量、反应时间、pH、温度为自变量,以丙烯酸废水TOC去除率为响应值,采用响应面分析法研究自变量及其交互作用对TOC去除率的影响,并通过回归方程求解和响应曲面分析,得到二次多项式回归方程的预测模型.结果表明,所选取的5个自变量与TOC去除率存在显著的相关性.确定Fenton氧化优化条件为:过氧化氢(30%)加入量15.4 mL·L-1,催化剂用量5.81 g·L-1,反应时间2 h,pH 3.0,温度25.0 ℃,优化条件下,丙烯酸废水TOC去除率可达99.0%.试验验证,实际值与模型预测值拟合性良好,偏差为3.23%.Abstract: In order to optimize the treatment of high-concentration acrylic acid wastewater by Fenton oxidation, response surface methodology was employed to investigate the effects of the independent variables and their interactions on the removal rate of TOC of acrylic acid wastewater. H2O2 dosage, catalyst dosage, reaction time, initial pH and reaction temperature were selected as independent variables, and the removal rate of total organic carbon (TOC) of acrylic acid wastewater as the response value. A predictive polynomial quadratic equation model was developed by solving the quadratic equation as well as analyzing the response surface plots and their corresponding contour plots. Response surface analysis results showed that the selected factors had significant correlation with the removal rate of TOC of acrylic acid wastewater. The optimum conditions of Fenton oxidation were determined to be 15.4 mL·L-1 H2O2(30%), 5.81 g·L-1 catalyst, 2.0 h reaction time, initial pH 3.0 and 25℃ reaction temperature. The removal rate of TOC of acrylic acid wastewater was up to 99.0% under the optimal conditions. The adequacy of the model equation for predicting the optimum response values was verified effectively by the experiment, and the experimental values agreed with the predicted values of the model equation with 3.23% deviation.
-
Key words:
- response surface methodology /
- acrylic acid wastewater /
- Fenton oxidation
-
-
[1] Staplesa C A, Murphy S R. Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters[J]. Chemosphere, 2000, 40:29-38 [2] John M Stewart, San Joy K. Anaerobic treatability of selected organic toxicants in petrochemical wastes[J]. Wat Res, 1995, 29(12):2730-2738 [3] Schonberg J Cressend, Bhattacharya Sanjoy K, Madura Richard L, et al. Evaluation of anaerobic treatment of selected petrochemical wastes[J]. Journal of Hazardous Materials, 1997, 54:47-63 [4] 苏本生, 乔壮明, 李鱼. EGSB反应器处理丙烯酸废水的试验研究[J]. 环境工程学报, 2007, 1(12):83-87 [5] 汤晓艳, 梅凯, 陆曦,等. 内循环UASB处理高浓度丙烯酸废水[J]. 南京工业大学学报, 2008, 30(5):94-99 [6] 周平, 钱易. 内循环生物流化床处理丙烯酸废水的试验[J]. 环境科学, 1994, 16(1):58-62 [7] 黄益宏. 气浮—水解—序批式活性污泥法处理高浓度特种丙烯酸废水[J]. 化工环保, 2006, 26(2):126-128 [8] 龚为进, 李方, 奚旦立. 丙烯酸废水超临界水氧化动力学研究[J]. 环境工程学报, 2008, 2(5):643-646 [9] 李万海, 黄江丽, 王红,等. 催化湿式氧化处理丙烯酸废水[J]. 吉林化工学院院报, 2007, 24(3):3-6 [10] 陈刚, 李丹阳, 张光明. 高浓度难降解有机废水处理技术[J]. 工业水处理, 2003, 23(3):13-15 [11] 佟玉衡. 实用废水处理技术[M]. 北京:化学工业出版社, 1998 [12] 许景文. 过氧化氢-铁盐化学氧化法用于有机废水深度处理[J]. 环境污染与防治, 1985, 7(5):1-6 -

计量
- 文章访问数: 1125
- HTML全文浏览数: 1084
- PDF下载数: 362
- 施引文献: 0