[1]
|
李梦耀,黎卫亮,钱会. 五氯苯酚的降解研究进展[J]. 安全与环境学报, 2007,7(02): 32-35
|
[2]
|
Salam M A, Burk R C. Thermodynamics and kinetics studies of pentachlorophenol adsorption from aqueous solutions by multi-walled carbon nanotubes[J]. Water Air and Soil Pollution, 2010, 210(1/4): 101-111
|
[3]
|
Li J, Qu G Z, Lu N, et al. Decomposition of pentachlorophenol using combination of densification by granular activated carbon adsorption and dielectric barrier discharge.2009 IEEE Industry Applications Society Annual Meeting, 2009: 525-529
|
[4]
|
Chen Y C, Lin C J, Fu S Y, et al. Effect of oxygen availability on the removal efficiency and sludge characteristics during pentachlorophenol (PCP) biodegradation in a coupled granular sludge system[J]. Water Science and Technology, 2010, 61(7): 1885-1893
|
[5]
|
Harbottle M J, Lear G, Sills G C, et al. Enhanced biodegradation of pentachlorophenol in unsaturated soil using reversed field electrokinetics[J]. Journal of Environmental Management, 2009, 90(5): 1893-1900
|
[6]
|
Ho D P, Senthilnanthan M, Mohammad J A, et al. The application of photocatalytic oxidation in removing pentachlorophenol from contaminated water[J]. Journal of Advanced Oxidation Technologies, 2010, 13(1): 21-26
|
[7]
|
Prabowo B, Veriansyah B, Kim J D. Hydrothermal decomposition of pentachlorophenol in subcritical and supercritical water with sodium hydroxide addition[J]. Journal of Environmental Sciences-China, 2007, 19(6): 663-666
|
[8]
|
Hong K H, Oh S J, Moon S H. Degradation of pentachlorophenol by ozone generated by a pulsed power corona discharge[J]. Water Air and Soil Pollution, 2003, 145(1): 187-203
|
[9]
|
Zimbron J A, Reardon K F. Fenton's oxidation of pentachlorophenol[J]. Water Research, 2009, 43(7): 1831-1840
|
[10]
|
Cui C Y, Quan X, Yu H T, et al. Electrocatalytic hydrodehalogenation of pentachlorophenol at palladized multiwalled carbon nanotubes electrode[J].Applied Catalysis B-Environmental, 2008, 80(1-2): 122-128
|
[11]
|
Liu W M, Hu Y Q, Tu S T. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent[J]. Journal of Hazardous Materials, 2010, 179(1-3): 545-551
|
[12]
|
Zhao S, Wang X H, Huo M X. Catalytic wet air oxidation of phenol with air and micellar molybdoyanadophosphoric polyoxometalates under room condition[J]. Applied Catalysis B-Environmental, 2010, 97(1-2): 127-134
|
[13]
|
Grosjean N, Descorme C, Besson M. Catalytic wet air oxidation of N,N-dimethylformamide aqueous solutions: Deactivation of TiO2 and ZrO2-supported noble metal catalysts[J]. Applied Catalysis B-Environmental, 2010, 97(1-2): 276-283
|
[14]
|
John R Anderson, Michel Boudart. Catalysis:Science and Technology, Vol. 2[M]. Springer-Verlag Berlin Heidelberg New York, 1981: 178-179
|
[15]
|
Joglekar H S, Samant S D, Joshi J B. Kinetics of wet air oxidation of phenol and substituted phenols[J]. Water Research, 1991, 25(2): 135-145
|
[16]
|
Cybulski A. Catalytic wet air oxidation: Are monolithic catalysts and reactors feasible[J]. Industrial & Engineering Chemistry Research, 2007, 46(12): 4007-4033
|
[17]
|
Belkacemi K, Larachi F, Sayari A. Lumped kinetics for solid-catalyzed wet oxidation: A versatile model[J]. Journal of Catalysis, 2000, 193(2): 224-237
|
[18]
|
Eftaxias A, Font J, Fortuny A, et al. Kinetic modelling of catalytic wet air oxidation of phenol by simulated annealing[J]. Applied Catalysis B-Environmental,2001, 33(2): 175-190
|