棕碳气溶胶的生消机制研究进展

关东杰, 沈振兴, 陈庆彩. 棕碳气溶胶的生消机制研究进展[J]. 环境化学, 2020, (10): 2812-2822. doi: 10.7524/j.issn.0254-6108.2019070902
引用本文: 关东杰, 沈振兴, 陈庆彩. 棕碳气溶胶的生消机制研究进展[J]. 环境化学, 2020, (10): 2812-2822. doi: 10.7524/j.issn.0254-6108.2019070902
GUAN Dongjie, SHEN Zhenxing, CHEN Qingcai. Formation and elimination of brown carbon aerosol: A review[J]. Environmental Chemistry, 2020, (10): 2812-2822. doi: 10.7524/j.issn.0254-6108.2019070902
Citation: GUAN Dongjie, SHEN Zhenxing, CHEN Qingcai. Formation and elimination of brown carbon aerosol: A review[J]. Environmental Chemistry, 2020, (10): 2812-2822. doi: 10.7524/j.issn.0254-6108.2019070902

棕碳气溶胶的生消机制研究进展

    通讯作者: 陈庆彩, E-mail: chenqingcai@sust.edu.cn.
  • 基金项目:

    国家自然科学基金(41877354,41703102)和陕西省自然科学基金(2018JM4011)资助.

Formation and elimination of brown carbon aerosol: A review

    Corresponding author: CHEN Qingcai, chenqingcai@sust.edu.cn.
  • Fund Project: Supported by the National Natural Science Foundation of China(41877354,41703102)and Natural Science Foundation of Shaanxi Province(2018JM4011).
  • 摘要: 在大气气溶胶中,黑碳(BC)是对光辐射有强烈吸收的物质.但近年的研究发现一部分有机碳(OC)在可见光区域也有光吸收,并且吸收强度随波长的减小而骤增,宏观呈现棕黄色,这类有机碳被定义为棕色碳—BrC(brown carbon).鉴于其特殊的吸光特性和光化学反应性,认为它可能对全球气候和大气环境质量具有潜在影响,因此近年来棕碳成为了环境领域一大研究热点.基于过去近三十年的研究,特别是近十年间,棕碳的光学特性、化学组成以及来源已有基本认知,但同时也存在基础研究薄弱、不全面的问题.文章特别指出的是相比于一次排放,目前对棕碳二次生成过程所涉及的前体物、反应机制尚未形成完整和确切的体系,其老化消去过程也亟待明晰.本文总结了目前主要的二次棕碳生成和消去的反应类型和机制,旨在指出棕碳二次生成和消去的最新进展以及存在的主要问题,为将来的研究方向提供借鉴和依据.
  • 加载中
  • [1] YTTRI K E, MYHRE C L, TORSETH K. The carbonaceous aerosol-A remaining challenge[J]. World Meteorological Organization Bulletin, 2009, 58(1):54-60.
    [2] RAMANATHAN V, CARMICHAEL G. Global and regional climate changes due to black carbon[J]. Nature Geoscience, 2008, 1(4):221-227.
    [3] XU B, CAO J, HANSEN J, et al. Black soot and the survival of tibetan glaciers[J]. Proceedings of the National Academy of Sciences, 2009, 106(52):22114-22118.
    [4] BHAT M A, ROMSHOO S A, BEIG G. Aerosol black carbon at an urban site-Srinagar, Northwestern Himalaya, India:Seasonality, sources, meteorology and radiative forcing[J]. Atmospheric Environment, 2017, 165:336-348.
    [5] KANAKIDOU M, SEINFELD J H, PANDIS S N, et al. Organic aerosol and global climate modelling:A review[J]. Atmospheric Chemistry and Physics, 2005, 5(4):1053-1123.
    [6] MA X Y, YU F Q. Seasonal and spatial variations of global aerosol optical depth:Multi-year modelling with GEOS-Chem-APM and comparisons with multiple-platform observations[J]. Tellus Series B-Chemical and Physical Meteorology, doi.org/10.3402/tellusb.v67.25115.
    [7] BOND T C, BUSSEMER M, WEHNER B, et al. Light Absorption by primary particle emissions from a lignite burning plant[J]. Environmental Science and Technology, 1999, 33(21):3887-3891.
    [8] JACOBSON, MARK Z. Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption[J]. Journal of Geophysical Research, 1999, 104(D3):3527-3542.
    [9] ANDREAE M, GELENCSER A. Black carbon or brown cabon? The nature of light-absorbing carbonaceous aerosols[J]. Atmospheric Chemistry and Physics, 2006, 6(10):3131-3148.
    [10] HOFFER A, GELENCSER A, GUYON P, et al. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols[J]. Atmospheric Chemistry and Physics, 2006, 6(11):3563-3570.
    [11] ALEXANDER D T L, CROZIER P A, ANDERSON J R. Brown carbon spheres in east Asian outflow and their optical properties[J]. Science, 2008, 321(5890):833-836.
    [12] YUAN J, HUANG X, CAO L, et al. Light absorption of brown carbon aerosol in the PRD region of China[J]. Atmospheric Chemistry and Physics, 2016, 15(20):28453-28482.
    [13] KIRCHSTETTER T W, NOVAKOV T, HOBBS P V. Evidence that the spectral dependence of light absorption by Aerosols is affected by organic carbon[J]. Journal of Geophysical Research-Atmospheres, 2004, 109:1-12.
    [14] FENG Y, RAMANATHAN V, KOTAMARTHI V R. Brown carbon:A significant atmospheric absorber of solar radiation?[J]. Atmospheric Chemistry and Physics, 2013, 13(17):8607-8621.
    [15] HANSEN J E, SATO M, RUEDY R. Radiative forcing and climate response[J]. Journal of Geophysical Research Atmospheres, 1997, 102(D6):6831-6864.
    [16] KRIVACSY Z, KISS G, CEBURNI D, et al. Study of water-soluble atmospheric humic matter in urban and marine environments[J]. Atmospheric Research, 2008, 87(1):1-12.
    [17] DOHERTY S J, WARREN S G, GRENFELL T C, et al. Light-absorbing impurities in Arctic snow[J]. Atmospheric Chemistry and Physics, 2010, 10(23):11647-11680.
    [18] WANG M, XU B, CAO J, et al. Carbonaceous aerosols recorded in a southeastern Tibetan glacier:Analysis of temporal variations and model estimates of sources and radiative forcing[J]. Atmospheric Chemistry and Physics, 2015, 15(3):1191-1204.
    [19] KASPARI S, PAINTER T, GYSEL M, et al. Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings[J]. Atmospheric Chemistry and Physics, 2014, 14(15):8089-8103.
    [20] CHUNG C E, RAMANATHAN V, DECREMER D. Observationally constrained estimates of cabonaceous aerosol radiative forcing[J]. Proceedings of the National Academy of Sciences, 2012, 109(29):11624-11629.
    [21] ZHENG G, HE K, DUAN F, et al. Measurement of humic-like substances in aerosols:A review[J]. Environmental Pollution, 2013, 181:301-314.
    [22] GRABER E, RUDICH Y. Atmospheric HULIS:How humic-like are they? A comprehensive and critical review[J]. Atmospheric Chemistry and Physics, 2006, 6(3):729-753.
    [23] POSFAI M, GELENCSER A, SIMONICS R, et al. Atmospheric tar balls:Particles from biomass and biofuel burning[J]. Journal of Geophysical Research Atmospheres, 2004, 109(6):1-9.
    [24] HAND J, MALM W C, LASKIN A, et al. Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study[J]. Journal of Geophysical Research Atmospheres, 2005, 110(D21):168-179.
    [25] TOTH Á, HOFFER A, NYIRO-KOSA I, et al. Atmospheric tar balls:Aged primary droplets from biomass burning?[J]. Atmospheric Chemistry and Physics, 2014, 14(13):6669-6675.
    [26] PHILLIPS S M, SMITH G D. Light absorption by charge transfer complexes in brown carbon aerosols[J]. Environmental Science and Technology Letters, 2014, 1(10):382-386.
    [27] RAMANATHAN V, CHUNG C, KIM D, et al. Atmospheric brown clouds:Impacts on South Asian climate and hydrological cycle[J]. Proceedings of the National Academy of Sciences, 2005, 102(15):5326-5333.
    [28] BOND T C, STREETS D G, YARBER K F, et al. A technology based inventory of black and organic carbon emissions from combustion[J]. Journal of Geophysical Research, 2004, 109(D14):D14203.
    [29] RAMANTHAN V, LI F, RAMANA M V, et al. Atmospheric brown clouds:hemispherical and regional variations in long-range transport, absorption, and radiative forcing[J]. Journal of Geophysical Research-Atmospheres 2007, 112(D22):365-371.
    [30] CHEN Y, BOND T C. Light absorption by organic carbon from wood combustion[J]. Atmospheric Chemistry and Physics Discussions, 2009, 9(5):20471-20513.
    [31] CHENG Y, ENGLING G, HE K B, et al. Biomass burning contribution to Beijing aerosol[J]. Atmospheric Chemistry and Physics, 2013, 13(15):7765-7781.
    [32] WASHENFELDER R A, ATTWOOD A R, BROCK C A, et al. Biomass burning dominates brown carbon absorption in the rural southeastern United States[J]. Geophysical Research Letters, 2015, 42(2):653-664.
    [33] SALEH R, ROBINSON E, TKACIK D, et al. Brownness of organics in aerosols from biomass burning linked to their black carbon content[J]. Nature Geoscience, 2014, 7(9):647-650.
    [34] BOND T C. Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion[J]. Geophysical Research Letters, 2001, 28(21):4075-4078.
    [35] YAN C, ZHENG M, BOSCH C, et al. Important fossil source contribution to brown carbon in Beijing during winter[J]. Scientific Reports, 2017, 7:43182.
    [36] YANG M, HOWELL S, ZHUANG J, et al. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China-interpretations of atmospheric measurements during EAST-AIRE[J]. Atmospheric Chemistry and Physics, 2009, 9(6):2035-2050.
    [37] ZHANG W, ZHUANG G, HUANG K, et al. Mixing and transformation of Asian dust with pollution in the two dust storms over the northern China in 2006[J]. Atmospheric Environment, 2010, 44(28):3394-3403.
    [38] 刘庆阳, 刘艳菊, 赵强, 等. 2012年春季京津冀地区一次沙尘暴天气过程中颗粒物的污染特征分析[J]. 环境科学, 2014, 35(8):2843-2850.

    LIU Q Y, LIU Y J, ZHAO Q, et al. Chemical characteristics in airborne particulate matter (PM10) during a high pollution spring dust storm episode in Beijing, Tianjin and Zhangjiakou, China[J]. Environmental Science, 2014, 35(8):2843-2850(in Chinese).

    [39] 吕森林, 王青躍, 吴明红, 等. 城区飞散致敏花粉与大气细/超细颗粒物的协同生物效应研究[J]. 环境科学, 2010, 31(9):2260-2266.

    LV S L, WANG Q Y, WU M H, et al. Perspectives on synergic biological effects induced by ambient allergenic pollen and urban fine/ultrafine particulate matters in atmosphere[J]. Environmental Science, 2010, 31(9):2260-2266(in Chinese).

    [40] WU S P, SCHWAB J, LIU B L, et al. Seasonal variations and source identification of selected organic acids associated with PM10 in the coastal area of Southeastern China[J]. Atmospheric Research, 2015, 155:37-51.
    [41] YANG B Y, HUANG X X, ZHENG A, et al. Compositions of organic acids in PM10 emission sources in Xiamen urban atmosphere[J]. Environmental Science, 2013, 34(1):8-14.
    [42] LIGGIO J, LI S M, HAYDEDN K, et al. Oil sands operations as a large source of secondary organic aerosols[J]. Nature, 2016, 534:91-94.
    [43] EDWARDS P, BROWN S, ROBERTS J, et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin[J]. Nature, 2014, 514(7522):351-354.
    [44] LINUMA Y, BOGE O, GRAFE R, et al. Methyl-nitrocatechols:Atmospheric tracer compounds for biomass burning secondary organic aerosols[J]. Environmental Science and Technology, 2010, 44(22):8453-8459.
    [45] NGUYEN T B, LEE P B, KIM K, et al. Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols[J]. Journal of Geophysical Research Atmospheres, 2012, 117(D1):D01207.
    [46] 周闪闪, 李彪, 韦娜娜, 等. 低挥发性有机物大气氧化反应与二次有机气溶胶形成机制研究现状[J]. 环境化学, 2019, 38(2):243-253.

    ZHOU S S, LI B, WEI N N, et al. Atmospheric oxidation of low volatility organic compounds and the formation mechanism of corresponding secondary organic aerosol[J]. Environmental Chemistry, 2019, 38(2):243-253(in Chinese).

    [47] GELENCSER A, HOFFER A, KISS G, et al. In-situ formation of light-absorbing organic matter in cloud water[J]. Journal of Atmospheric Chemistry, 2003, 45(1):25-33.
    [48] MIKAEL E, THORNTON J A, EINHARD K, et al. A large source of low-volatility secondary organic aerosol[J]. Nature, 2014, 506(7489):476-479.
    [49] AMIN H S, HATFIELD M L, HUFF HARTZ K E. Characterization of secondary organic aerosol generated from ozonolysis of α-pinene mixtures[J]. Atmospheric Environment, 2013, 67(1):323-330.
    [50] LIU Y, HOPKE P K. A chamber study of secondary organic aerosol formed by ozonolysis of α-pinene in the presence of nitric oxide[J]. Journal of Atmospheric Chemistry, 2014, 71(1):21-32.
    [51] JAOUI M, CORSE E, KLEINDIENST T, et al. Analysis of secondary organic aerosol compounds from the photooxidation of d-limonene in the presence of NOx and their detection in ambient PM2.5[J]. Environmental Science and Technology, 2006, 40(12):3819-3828.
    [52] NAKAYAMA T, MATSUMI Y, SATO K, et al. Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of alpha-pinene[J]. Journal of Geophysical Research-Atmospheres, 2010, 115(D24):D24204.
    [53] 李时政, 马嫣, 郑军, 等. α-蒎烯臭氧氧化反应中二次有机气溶胶理化特性与云凝结核活性[J]. 环境化学, 2015, 34(9):1633-1641.

    LI S Z, MA Y, ZHENG J, et al. Physicochemical properties and cloud nucleating abilities of secondary organic aerosol from α-pinene ozonlysis[J]. Environmental Chemistry,2015, 34(9):1633-1641(in Chinese).

    [54] SONG C, GYAWALI M, ZAVERI R, et al. Light absorption by secondary organic aerosol from α-pinene:Effects of oxidants, seed aerosol acidity, and relative humidity[J]. Journal of Geophysical Research-Atmospheres, 2013, 118(20):11741-11749.
    [55] FLORES M, WASHENFELDER R A, ADLER G, et al. Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia[J]. Physical Chemistry Chemical Physics, 2014, 16(22):10629-10643.
    [56] UPDYKE K M, NGUYEN T B, NIZKORODOV S A. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors[J]. Atmospheric Environment, 2012, 63:22-31.
    [57] LEE H J, LASKIN A, LASKIN J, et al. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols[J]. Environmental Science and Technology, 2013, 47(11):5763-5770.
    [58] BONES D L, HENRICKSEN D K, MANG S A, et al. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales[J]. Journal of Geophysical Research-Atmospheres, doi.org/10.1029/2009JD012864.
    [59] LIMBECK A, KULMALA M, PUXBAUM H. Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles[J]. Geophysical Research Letters,doi.org/10.1029/2003GL017738.
    [60] PAULOT F, CROUNSE J D, KJAERGARD H G, et al. Unexpected epoxide formation in the gas-phase photooxidation of isoprene[J]. Science, 2009, 325(5941):730-733.
    [61] LIN Y H, ZHANG Z, DOCHERTY K S, et al. Isoprene epoxydiols as precursors to secondary organic aerosol formation:acid-catalyzed reactive uptake studies with authentic compounds[J]. Environmental Science and Technology, 2012, 46(1):250-258.
    [62] SURRATT J D, ARTHUR W H, EDDINGSAAS N C, et al. Reactive intermediates revealed in secondary organic aerosol formation from isoprene[J]. Proceedings of the National Academy of Sciences, 2010, 107(15):6640-6645.
    [63] LIN Y H, BUDISULISTIORINI H, CHU K, et al. Light-absorbing oligomer formation in secondary organic aerosol from reactive uptake of isoprene epoxydiols[J]. Environmental Science and Technology, 2014, 48(20):12012-12021.
    [64] ZHONG M, JANG M. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere[J]. Atmospheric Environment, 2011, 45(25):4263-4271.
    [65] XIE M, CHEN X, HAYS M D, et al. Light absorption of secondary organic aerosol:Composition and contribution of nitroaromatic compounds[J]. Environmental Science and Technology, 2017, 51(20):11607-11616.
    [66] KIM H, PAULSON S E. Real refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozonolysis of limonene, α-pinene and toluene[J]. Atmospheric Chemistry Physics, 2013, 13(15):7711-7723.
    [67] LIN P, LIU J, SHILLING J E, et al. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene[J]. Physical Chemistry Chemical Physics, 2015, 17(36):23312-23325.
    [68] KWAMENA N O A, ABBATT J P D. Heterogeneous nitration reactions of polycyclic aromatic hydrocarbons and n-hexane soot by exposure to NO3/NO2/N2O5[J]. Atmospheric Environment, 2008, 42(35):8309-8314.
    [69] LIU S, SHILLING J E, SONG C, et al. Hydrolysis of organonitrate functional groups in aerosol particles[J]. Aerosol Science and Technology, 2012, 46(12):1359-1369.
    [70] LEE H J J, AIONA P K, LASKIN A, et al. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon[J]. Environmental Science and Technology, 2014, 48(17):10217-10226.
    [71] ROMONOSKY D E, LASKIN A, LASKIN J, et al. High-resolution mass spectrometry and molecular characterization of aqueous photochemistry products of common types of secondary organic aerosols[J]. The Journal of Physical Chemistry, 2015, 119(11):2594-2606.
    [72] LIU P F, ABDELMALKI N, HUNG H M, et al. Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and mxylene[J]. Atmospheric Chemistry and Physics, 2015, 15(3):1435-1446.
    [73] OFNER J, KRUGER H U, GROTHE H, et al. Physico-chemical characterization of SOA derived from catechol and guaiacol-a model substance for the aromatic fraction of atmospheric HULIS[J]. Atmospheric Chemistry and Physics, 2011, 11(1):1-15.
    [74] OFNER J, BALZER N, BUXMANN J, et al. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms[J]. Atmospheric Chemistry and Physics, 2012, 12(13):5787-5806.
    [75] JIANG H, FRIE A L, LAVI A, et al. Brown carbon formation from nighttime chemistry of unsaturated heterocyclic volatile organic compounds[J]. Environmental Science and Technology Letters, 2019, 6(3):184-190.
    [76] SUN Y L, ZHANG Q, ANASTASION C, et al. Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry[J]. Atmospheric Chemistry and Physics, 2010, 10(10):4809-4822.
    [77] KITANOVSKI Z, ČUSAK A, GRGIC I, et al. Chemical characterization of the main products formed through aqueous-phase photonitration of guaiacol[J]. Atmospheric Measurement Techniques, 2014, 7(8):2457-2470.
    [78] CHANG J L, THOMPSON J. Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds[J]. Atmospheric Environment, 2010, 44(4):541-551.
    [79] LI Y J, HUANG D D, CHEUNG H Y, et al. Aqueous-phase photochemical oxidation and direct photolysis of vanillin-a model compound of methoxy-phenols from biomass burning[J]. Atmospheric Chemistry and Physics. 2014, 14(6):27641-27675.
    [80] LAURENTⅡS D, ELISA, BABITA S, et al. Phenol transformation and dimerisation, photosensitised by the triplet state of 1-nitronaphthalene:A possible pathway to humic-like substances (HULIS) in atmospheric waters[J]. Atmospheric Environment, 2013, 70:318-327.
    [81] SMITH J D, VICKY S, LU Y, et al. Secondary organic aerosol production from aqueous reactions of atmospheric phenols with an organic triplet excited state[J]. Environmental Science and Technology, 2014, 48(2):1049-1057.
    [82] LAVI A, LIN P, BHADURI B, et al. Characterization of light-absorbing oligomers from reactions of phenolic compounds and Fe(Ⅲ)[J]. ACS Earth and Space Chemistry, 2017, 1(10):637-646.
    [83] HAYNES J P, MILLER K E, MAJESTIC B J. Investigation into photoinduced auto-oxidation of polycyclic aromatic hydrocarbons resulting in brown carbon production[J]. Environmental Science and Technology, 2019, 53(2):682-691.
    [84] ALTIERI K E, CARLTON A G, LIM H J, et al. Evidence for oligomer formation in clouds:Reactions of isoprene oxidation products[J]. Environmental Science and Technology, 2006, 40(16):4956-4960.
    [85] ALTIERI K E, SEITZINGER S P, CARLTON A G, et al. Oligomers formed through in-cloud methylglyoxal reactions:Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry[J]. Atmospheric Environment, 2008, 42(7):1476-1490.
    [86] PERRI M J, SEITZINGER S, TURPIN B J. Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde:Laboratory experiments[J]. Atmospheric Environment, 2009, 43(8):1487-1497.
    [87] HOLMES B J, PETRUCCI G A. Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols[J]. Environmental Science and Technology, 2006, 40(16):4983-4989.
    [88] HAAN D O D, TAPAVICZA E, RIVA M, et al. Nitrogen-containing, light-absorbing oligomers produced in aerosol particles exposed to methylglyoxal, photolysis, and cloud cycling[J]. Environmental Science and Technology, 2018, 52(7):4061-4071.
    [89] IP H S S, HUANG X H H, YU J Z. Effective Henry's law constants of glyoxal, glyoxylic acid, and glycolic acid[J]. Geophysical Research Letters, doi.org/10.1029/2008GL036212.
    [90] YU G, BAYER A R, GALLOWAY M M, et al. Glyoxal in aqueous ammonium sulfate solutions:Products, kinetics and hydration effects[J]. Environmental Science and Technology, 2011, 45(15):6336-6342.
    [91] NOZIERE B, DZIEDZIC P, Cordova A. Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4+)[J]. The Journal of Physical Chemistry, 2009, 113(1):231-237.
    [92] SHAPIRO E L, SZPRENGIEL J, SAREEN N, et al. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics[J]. Atmospheric Chemistry Physics, 2009, 9(7):2289-2300.
    [93] DROZD G T, MCNEILL V F. Organic matrix effects on the formation of light-absorbing compounds from α-dicarbonyls in aqueous salt solution[J]. Environmental Science:Processes and Impacts, 2014, 16(4):741-747.
    [94] SAREEN N, SCHWIER A N, SHAPIRO E L, et al. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics[J]. Atmospheric Chemistry Physics, 2010, 10(3):997-1016.
    [95] POWELSON M H, ESPELIEN B M, HAWKINS L N, et al. Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate[J]. Environmental Science and Technology, 2014, 48(2):985-993.
    [96] ORTIZ W M, HU M, DU Z, et al. Formation and optical properties of brown carbon from small α-dicarbonyls and amines[J]. Environmental Science and Technology, 2019, 53(1):117-126.
    [97] ERVENS B, VOLKAMER R. Glyoxal processing outside clouds:towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles[J]. Atmospheric Chemistry and Physics Discussions, 2010, 10(5):12371-12431.
    [98] LOEFFLER K W, KOEHLER C A, PAUL N M, et al. Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions[J].Environmental Science and Technology, 2006, 40(20):6318-6323.
    [99] HAAN D O D, TOLBERT M A, JIMENEZ J L. Atmospheric condensed-phase reactions of glyoxal with methylamine[J]. Geophysical Research Letters, 2009, 36(11):269-271.
    [100] YASMEEN F, SAURET N, GAL J F, et al. Characterization of oligomers from methylglyoxal under dark conditions:A pathway to produce secondary organic aerosol through cloud processing during nighttime[J]. Atmospheric Chemistry Physics, 2010, 10(8):3803-3812.
    [101] GAO Y, ZHANG Y. Formation and photochemical investigation of brown carbon by hydroxyacetone reactions with glycine and ammonium sulfate[J]. Royal Society of Chemistry Advances, 2018, 8(37):20719-20725.
    [102] NOZIERE B, ESTEVE W. Light-absorbing aldol condensation products in acidic aerosols:Spectra, kinetics, and contribution to the absorption index[J]. Atmospheric Environment, 2007, 41(6):1150-1163.
    [103] NOZIERE B, CORDOVA A. A kinetic and mechanistic study of the amino acid catalyzed aldol condensation of acetaldehyde in aqueous and salt solutions[J]. The Journal of Physical Chemistry, 2008, 112(13):2827-2837.
    [104] NOZIERE B, DZIEDZIC P, CORDOVA A. Inorganic ammonium salts and carbonate salts are efficient catalysts for aldol condensation in atmospheric aerosols[J]. Physical Chemistry Chemical Physics, 2010, 12(15):3864-3872.
    [105] NGUYEN T B, LASKIN A, LASKIN J, et al. Brown carbon formation from ketoaldehydes of biogenic monoterpenest[J]. Faraday Discussions, 2013, 165(34):473-494.
    [106] GALLOWAY M M, CHHABRA P S, CHAN A W H, et al. Glyoxal uptake on ammonium sulphate seed aerosol:Reaction products and reversibility of uptake under dark and irradiated conditions[J]. Atmospheric Chemistry Physics, 2009, 9(10):3331-3345.
    [107] AREGAHEGN K Z, NOZIERE B, GEORGE C. Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols[J]. Faraday Discussions, 2013, 165:123-134.
    [108] ROSSIGNOL S, AREGAHEGN K Z, TINEL L, et al. Glyoxal induced atmospheric photosensitized chemistry leading to organic aerosol growth[J]. Environmental Science and Technology, 2014, 48(6):3218-3227.
    [109] KAMPF C J, JAKOB R, HOFFMANN T. Identification and characterization of aging products in the glyoxal/ammonium sulfate system:implications for light-absorbing material in atmospheric aerosols[J]. Atmospheric Chemistry and Physics, 2012, 12(14):6323-6333.
    [110] XU J, CUI T Q, FOWLER B, et al. Aerosol brown carbon from dark reactions of syringol in aqueous aerosol mimics[J]. Earth Space Chemistry, 2018, 2(6):608-617.
    [111] WONG J P S, NENES A, WEBER R J, et al. Changes in light absorptivity of molecular weight separated brown carbon due to photolytic aging[J]. Environmental Science and Technology,2017, 51(15):8414-8421.
    [112] LI C, HE Q F, SCHADE J, et al. Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging[J]. Atmospheric Chemistry and Physics, 2019, 19(1):139-163.
    [113] LEE H J, AIONA P K, LASKIN A, et al. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon[J]. Environmental Science and Technology, 2014, 48(17):10217-10226.
    [114] BATEMAN A P, NIZKORODOV S A, JULIA L, et al. Photolytic processing of secondary organic aerosols dissolved in cloud droplets[J]. Physical Chemistry Chemical Physics, 2011, 13(26):12199-12212.
    [115] NGUYEN T B, LASKIN A, LASKIN J, et al. Direct aqueous photochemistry of isoprene high-NO(x) secondary organic aerosol[J]. Physical Chemistry Chemical Physics, 2012, 14(27):9702-9714.
    [116] ZHAO R, LEE A K Y, HUANG L, et al. Photochemical processing of aqueous atmospheric brown carbon[J]. Atmospheric Chemistry and Physics, 2015, 15(2):6087-6100.
    [117] ZHONG M, JANG M. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight[J]. Atmospheric Chemistry and Physics, 2014, 14(3):1517-1525.
    [118] SUMLIN B J, PANDEY A, WALKER M J, et al. Atmospheric photooxidation diminishes light absorption by primary brown carbon aerosol from biomass burning[J]. Environmental Science and Technology Letters, 2017, 4(12):540-545.
  • 加载中
计量
  • 文章访问数:  4402
  • HTML全文浏览数:  4402
  • PDF下载数:  155
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-09
关东杰, 沈振兴, 陈庆彩. 棕碳气溶胶的生消机制研究进展[J]. 环境化学, 2020, (10): 2812-2822. doi: 10.7524/j.issn.0254-6108.2019070902
引用本文: 关东杰, 沈振兴, 陈庆彩. 棕碳气溶胶的生消机制研究进展[J]. 环境化学, 2020, (10): 2812-2822. doi: 10.7524/j.issn.0254-6108.2019070902
GUAN Dongjie, SHEN Zhenxing, CHEN Qingcai. Formation and elimination of brown carbon aerosol: A review[J]. Environmental Chemistry, 2020, (10): 2812-2822. doi: 10.7524/j.issn.0254-6108.2019070902
Citation: GUAN Dongjie, SHEN Zhenxing, CHEN Qingcai. Formation and elimination of brown carbon aerosol: A review[J]. Environmental Chemistry, 2020, (10): 2812-2822. doi: 10.7524/j.issn.0254-6108.2019070902

棕碳气溶胶的生消机制研究进展

    通讯作者: 陈庆彩, E-mail: chenqingcai@sust.edu.cn.
  • 1. 陕西科技大学环境科学与工程学院, 西安, 710021;
  • 2. 西安交通大学环境科学与工程学院, 西安, 710049
基金项目:

国家自然科学基金(41877354,41703102)和陕西省自然科学基金(2018JM4011)资助.

摘要: 在大气气溶胶中,黑碳(BC)是对光辐射有强烈吸收的物质.但近年的研究发现一部分有机碳(OC)在可见光区域也有光吸收,并且吸收强度随波长的减小而骤增,宏观呈现棕黄色,这类有机碳被定义为棕色碳—BrC(brown carbon).鉴于其特殊的吸光特性和光化学反应性,认为它可能对全球气候和大气环境质量具有潜在影响,因此近年来棕碳成为了环境领域一大研究热点.基于过去近三十年的研究,特别是近十年间,棕碳的光学特性、化学组成以及来源已有基本认知,但同时也存在基础研究薄弱、不全面的问题.文章特别指出的是相比于一次排放,目前对棕碳二次生成过程所涉及的前体物、反应机制尚未形成完整和确切的体系,其老化消去过程也亟待明晰.本文总结了目前主要的二次棕碳生成和消去的反应类型和机制,旨在指出棕碳二次生成和消去的最新进展以及存在的主要问题,为将来的研究方向提供借鉴和依据.

English Abstract

参考文献 (118)

返回顶部

目录

/

返回文章
返回