蛋白核小球藻吸收无机砷的影响特征分析

周昉, 梁原, 张建英. 蛋白核小球藻吸收无机砷的影响特征分析[J]. 环境化学, 2020, (10): 2804-2811. doi: 10.7524/j.issn.0254-6108.2019090903
引用本文: 周昉, 梁原, 张建英. 蛋白核小球藻吸收无机砷的影响特征分析[J]. 环境化学, 2020, (10): 2804-2811. doi: 10.7524/j.issn.0254-6108.2019090903
ZHOU Fang, LIANG Yuan, ZHANG Jianying. Analysis on chemical characterization for inorganic arsenic uptake of Chlorella pyrenoidosa[J]. Environmental Chemistry, 2020, (10): 2804-2811. doi: 10.7524/j.issn.0254-6108.2019090903
Citation: ZHOU Fang, LIANG Yuan, ZHANG Jianying. Analysis on chemical characterization for inorganic arsenic uptake of Chlorella pyrenoidosa[J]. Environmental Chemistry, 2020, (10): 2804-2811. doi: 10.7524/j.issn.0254-6108.2019090903

蛋白核小球藻吸收无机砷的影响特征分析

    通讯作者: 张建英, E-mail: zjy@zju.edu.cn
  • 基金项目:

    国家自然科学基金(21477103)资助.

Analysis on chemical characterization for inorganic arsenic uptake of Chlorella pyrenoidosa

    Corresponding author: ZHANG Jianying, zjy@zju.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21477103).
  • 摘要: 蛋白核小球藻(Chlorella pyrenoidosa)由于其快速生长特性而被应用于水污染生态修复.本文以蛋白核小球藻为受试绿藻,研究了绿藻细胞界面对As和As的吸收累积作用,分析了水体pH影响,以及胞外聚合物(extracellular polymeric substance,EPS)释放量和官能团特征.结果表明,蛋白核小球藻细胞吸收As和As呈浓度依赖关系,短期暴露的藻生长抑制浓度As低于As,对As和As最大吸收量分别为39.84 μg·g-1和56 μg·g-1,其吸收和累积能力受pH影响,藻细胞藻-水界面zeta电位、EPS总释放量及其表面活性官能团被检测出呈特征变化.
  • 加载中
  • [1] SINGH R, SINGH S, PARIHAR P, et al. Arsenic contamination, consequences and remediation techniques:A review[J]. Ecotoxicology and Environmental Safety, 2015, 112:247-270.
    [2] HE J,CHARLET L. A review of arsenic presence in China drinking water[J]. Journal of Hydrology, 2013, 492:79-88.
    [3] ZHU Y G, YOSHINAGA M, ZHAO F J, et al. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1):443-467.
    [4] MUNOZ L P, PURCHASE D, JONES H, et al. The mechanisms of detoxification of As (Ⅲ), dimethylarsinic acid (DMA) and As (Ⅴ) in the microalga Chlorella vulgaris[J]. Aquatic Toxicology, 2016, 175:56-72.
    [5] WANG N X, LI Y, DENG X H, et al. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes[J]. Water Research, 2013, 47(7):2497-2506.
    [6] BAHAR M M, MEGHARAJ M,NAIDU R. Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil[J]. Journal of Applied Phycology, 2013, 25(3):913-917.
    [7] WANG Z H, LUO Z X, YAN C Z, et al. Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes[J]. Journal of Hazardous Materials, 2014, 276:393-399.
    [8] YANG B, LIU J, JIANG Y, et al. Chlorella species as hosts for genetic engineering and expression of heterologous proteins:Progress, challenge and perspective[J]. Biotechnology Journal, 2016, 11(10):1244-1261.
    [9] 黄飞, 周昉,姜舒扬等. 绿藻胞外聚合物对无机砷生物累积特征的影响[J]. 环境化学, 2019, 38(5):1021-1027.

    HUANG F, ZHOU F, JIANG S Y, et al. Effects of extracellular polymeric substances on the bioaccumulation of inorganic arsenic by green microalgae[J]. Environmental Chemistry, 2019, 38(5):1021-1027(in Chinese).

    [10] BHUNIA B, PRASAD UDAY U S, OINAM G, et al. Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal[J]. Carbohydrate Polymers, 2018, 179:228-243.
    [11] SHARMA V K,SOHN M. Aquatic arsenic:Toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35(4):743-759.
    [12] SHEN L, LI Z F, WANG J J, et al. Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd(Ⅱ) by Synechocystis sp. PCC6803[J]. Environmental Science and Pollution Research, 2018, 25(21):20713-20722.
    [13] MONTAZER-RAHMATI M M, RABBANI P, ABDOLALI A, et al. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae[J]. Journal of Hazardous Materials, 2011, 185(1):401-407.
    [14] SHAMSHAD I, KHAN S, WAQAS M, et al. Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution:A mesocosm research[J]. International Journal of Phytoremediation, 2016, 18(4):393-398.
    [15] Organization for Economic Co-operation and Development. OECD guidelines for the testing of chemicals. Test 201:Algal growth inhibition test[R]. France:OECD, 2011.
    [16] LEVY J L, STAUBER J L, ADAMS M S, et al. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum)[J]. Environmental Toxicology and Chemistry, 2005, 24(10):2630-2639.
    [17] MORRIS D L. Quantitative determination of carbohydrates with dreywoods anthrone reagent[J]. Science, 1948, 107(2775):254-255.
    [18] WANG L L, WANG L F, REN X M, et al. pH dependence of structure and surface properties of microbial EPS[J]. Environmental Science & Technology, 2012, 46(2):737-744.
    [19] WANG B B, LIU X T, CHEN J M, et al. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge:The impacts of polymerization degree of proteinaceous substrates[J]. Water Research, 2018, 129:133-142.
    [20] BAHAR M M, MEGHARAJ M,NAIDU R. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.[J]. Environmental Science and Pollution Research, 2016, 23(3):2663-2668.
    [21] WANG Y, ZHENG Y, LIU C, et al. Arsenate toxicity and metabolism in the halotolerant microalga Dunaliella salina under various phosphate regimes[J]. Environmental Science-Processes & Impacts, 2016, 18(6):735-743.
    [22] ASLAM S N, STRAUSS J, THOMAS D N, et al. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice[J]. The ISME Journal, 2018, 12(5):1237-1251.
    [23] LUTZU G A, ZHANG L L, ZHANG Z H, et al. Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum[J]. Bioprocess and Biosystems Engineering, 2017, 40(1):73-83.
    [24] CHIOU Y T, HSIEH M L,YEH H H. Effect of algal extracellular polymer substances on UF membrane fouling[J]. Desalination, 2010, 250(2):648-652.
    [25] ZHAO F C, SU Y M, TAN X B, et al. Effect of temperature on extracellular organic matter (EOM) of Chlorella pyrenoidosa and effect of EOM on irreversible membrane fouling[J]. Colloids and Surfaces B:Biointerfaces, 2015, 136:431-439.
    [26] WEI X, FANG L, CAI P, et al. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria[J]. Environmental Pollution, 2011, 159(5):1369-1374.
    [27] XIE S W, LIU J X, YANG F, et al. Arsenic uptake, transformation, and release by three freshwater algae under conditions with and without growth stress[J]. Environmental Science and Pollution Research, 2018, 25(20):19413-19422.
    [28] CHE F F, DU M M,YAN C Z. Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels[J]. Journal of Environmental Sciences, 2018, 66:41-49.
    [29] WANG Y, WANG S, XU P P, et al. Review of arsenic speciation, toxicity and metabolism in microalgae[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3):427-451.
    [30] YIN X X, WANG L H, DUAN G L, et al. Characterization of arsenate transformation and identification of arsenate reductase in a green alga Chlamydomonas reinhardtii[J]. Journal of Environmental Sciences, 2011, 23(7):1186-1193.
  • 加载中
计量
  • 文章访问数:  2284
  • HTML全文浏览数:  2284
  • PDF下载数:  106
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-09
周昉, 梁原, 张建英. 蛋白核小球藻吸收无机砷的影响特征分析[J]. 环境化学, 2020, (10): 2804-2811. doi: 10.7524/j.issn.0254-6108.2019090903
引用本文: 周昉, 梁原, 张建英. 蛋白核小球藻吸收无机砷的影响特征分析[J]. 环境化学, 2020, (10): 2804-2811. doi: 10.7524/j.issn.0254-6108.2019090903
ZHOU Fang, LIANG Yuan, ZHANG Jianying. Analysis on chemical characterization for inorganic arsenic uptake of Chlorella pyrenoidosa[J]. Environmental Chemistry, 2020, (10): 2804-2811. doi: 10.7524/j.issn.0254-6108.2019090903
Citation: ZHOU Fang, LIANG Yuan, ZHANG Jianying. Analysis on chemical characterization for inorganic arsenic uptake of Chlorella pyrenoidosa[J]. Environmental Chemistry, 2020, (10): 2804-2811. doi: 10.7524/j.issn.0254-6108.2019090903

蛋白核小球藻吸收无机砷的影响特征分析

    通讯作者: 张建英, E-mail: zjy@zju.edu.cn
  • 1. 浙江大学环境与资源学院, 杭州, 310058;
  • 2. 浙江省有机污染过程与控制重点实验室, 杭州, 310058;
  • 3. 国家级环境与资源实验教学示范中心(浙江大学), 杭州, 310058
基金项目:

国家自然科学基金(21477103)资助.

摘要: 蛋白核小球藻(Chlorella pyrenoidosa)由于其快速生长特性而被应用于水污染生态修复.本文以蛋白核小球藻为受试绿藻,研究了绿藻细胞界面对As和As的吸收累积作用,分析了水体pH影响,以及胞外聚合物(extracellular polymeric substance,EPS)释放量和官能团特征.结果表明,蛋白核小球藻细胞吸收As和As呈浓度依赖关系,短期暴露的藻生长抑制浓度As低于As,对As和As最大吸收量分别为39.84 μg·g-1和56 μg·g-1,其吸收和累积能力受pH影响,藻细胞藻-水界面zeta电位、EPS总释放量及其表面活性官能团被检测出呈特征变化.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回