Zezza D, Tait S, Della Salda L, et al. Toxicological, gene expression and histopathological evaluations of environmentally realistic concentrations of polybrominated diphenyl ethers PBDE-47, PBDE-99 and PBDE-209 on zebrafish embryos[J]. Ecotoxicology and Environmental Safety, 2019, 183:109566
|
McDonald T A. A perspective on the potential health risks of PBDEs[J]. Chemosphere, 2002, 46(5):745-755
|
Giraudo M, Douville M, Letcher R J, et al. Effects of food-borne exposure of juvenile rainbow trout (Oncorhynchus mykiss) to emerging brominated flame retardants 1,2-bis(2,4,6-tribromophenoxy)ethane and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate[J]. Aquatic Toxicology, 2017, 186:40-49
|
Brown F R, Winkler J, Visita P, et al. Levels of PBDEs, PCDDs, PCDFs, and coplanar PCBs in edible fish from California coastal waters[J]. Chemosphere, 2006, 64(2):276-286
|
Rose M, Fernandes A, Mortimer D, et al. Contamination of fish in UK fresh water systems:Risk assessment for human consumption[J]. Chemosphere, 2015, 122:183-189
|
Guo H, Zheng X, Ru S, et al. The leaching of additive-derived flame retardants (FRs) from plastics in avian digestive fluids:The significant risk of highly lipophilic FRs[J]. Journal of Environmental Sciences, 2019, 85:200-207
|
Boyles E, Nielsen C K. PBDEs and dechloranes in raccoons in the Midwestern United States[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(6):758-762
|
Chen Y P, Zheng Y J, Liu Q, et al. PBDEs (polybrominated diphenyl ethers) pose a risk to captive giant pandas[J]. Environmental Pollution, 2017, 226:174-181
|
Wemken N, Drage D S, Cellarius C, et al. Emerging and legacy brominated flame retardants in the breast milk of first time Irish mothers suggest positive response to restrictions on use of HBCDD and Penta- and Octa-BDE formulations[J]. Environmental Reseach, 2019, 180:108805
|
Yin S, Guo F, Aamir M, et al. Multicenter biomonitoring of polybrominated diphenyl ethers (PBDEs) in colostrum from China:Body burden profile and risk assessment[J]. Environmental Research, 2019, 179:108828
|
Macaulay L J, Chen A, Rock K D, et al. Developmental toxicity of the PBDE metabolite 6-OH-BDE-47 in zebrafish and the potential role of thyroid receptor beta[J]. Aquatic Toxicology, 2015, 168:38-47
|
Yang J, Zhao H, Chan K M. Toxic effects of polybrominated diphenyl ethers (BDE-47 and 99) and localization of BDE-99 induced cyp1a mRNA in zebrafish larvae[J]. Toxicology Reports, 2017, 4:614-624
|
Chen L, Yu K, Huang C, et al. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in zebrafish larvae[J]. Environmental & Science Technology, 2012, 46(17):9727-9734
|
Wang F, Fang M, Hinton D E, et al. Increased coiling frequency linked to apoptosis in the brain and altered thyroid signaling in zebrafish embryos (Danio rerio) exposed to the PBDE metabolite 6-OH-BDE-47[J]. Chemosphere, 2018, 198:342-350
|
Linares V, Belles M, Domingo J L. Human exposure to PBDE and critical evaluation of health hazards[J]. Archives of Toxicology, 2015, 89(3):335-356
|
Abolaji A O, Kamdem J P, Lugokenski T H, et al. Involvement of oxidative stress in 4-vinylcyclohexene-induced toxicity in Drosophila melanogaster[J]. Free Radical Biology and Medicine, 2014, 71:99-108
|
Balch G C, Velez-Espino L A, Sweet C, et al. Inhibition of metamorphosis in tadpoles of Xenopus laevis exposed to polybrominated diphenyl ethers (PBDEs)[J]. Chemosphere, 2006, 64(2):328-338
|
Macaulay L J, Chernick M, Chen A, et al. Exposure to a PBDE/OH-BDE mixture alters juvenile zebrafish (Danio rerio) development[J]. Environmental Toxicology and Chemistry, 2017, 36(1):36-48
|
Levy-Bimbot M, Major G, Courilleau D, et al. Tetrabromobisphenol-A disrupts thyroid hormone receptor alpha function in vitro:Use of fluorescence polarization to assay corepressor and coactivator peptide binding[J]. Chemosphere, 2012, 87(7):782-788
|
Dong W, Macaulay L J, Kwok K W, et al. The PBDE metabolite 6-OH-BDE-47 affects melanin pigmentation and THRβ mRNA expression in the eye of zebrafish embryos[J]. Endocrine Disruptors, 2014, 2(1):e969072
|
Zheng J, Hashimoto A, Putnam M, et al. Development of a thyroid hormone receptor targeting conjugate[J]. Bioconjugate Chemistry, 2008, 19(6):1227-1234
|
Benvenuti S, Luciani P, Cellai I, et al. Thyroid hormones promote cell differentiation and up-regulate the expression of the seladin-1 gene in in vitro models of human neuronal precursors[J]. Journal of Endocrinology, 2008, 197(2):437-446
|
Xing W, Govoni K E, Donahue L R, et al. Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice[J]. Journal of Bone and Mineral Research, 2012, 27(5):1067-1079
|
Helbing C C, Bailey C M, Ji L, et al. Identification of gene expression indicators for thyroid axis disruption in a Xenopus laevis metamorphosis screening assay. Part 1. Effects on the brain[J]. Aquatic Toxicology, 2007, 82(4):227-241
|
Argumedo G S, Sanz C R, Olguin H J. Experimental models of developmental hypothyroidism[J]. Hormone Metabolic Research, 2012, 44(2):79-85
|
Rivas M, Naranjo J R. Thyroid hormones, learning and memory[J]. Genes Brain and Behavior, 2007, 6(1):40-44
|
Azadi S, Zhang Y, Caffe A R, et al. Thyroid-beta2 and the retinoid RAR-alpha, RXR-gamma and ROR-beta2 receptor mRNAs; expression profiles in mouse retina, retinal explants and neocortex[J]. Neuroreport, 2002, 13(6):745-750
|
Xing W, Aghajanian P, Goodluck H, et al. Thyroid hormone receptor-beta1 signaling is critically involved in regulating secondary ossification via promoting transcription of the Ihh gene in the epiphysis[J]. American Journal of Physiology Endocrinology and Metabolism, 2016, 310(10):E846-E854
|
Arbogast P, Flamant F, Godement P, et al. Thyroid hormone signaling in the mouse retina[J]. PLoS One, 2016, 11(12):e0168003
|
Jones I, Srinivas M, Ng L, et al. The thyroid hormone receptor beta gene:Structure and functions in the brain and sensory systems[J]. Thyroid, 2003, 13(11):1057-1068
|
Carlsson G, Kulkarni P, Larsson P, et al. Distribution of BDE-99 and effects on metamorphosis of BDE-99 and -47 after oral exposure in Xenopus tropicalis[J]. Aquatic Toxicology, 2007, 84(1):71-79
|
Wu L, Li Y, Ru H, et al. Parental exposure to 2,2',4,4'5-pentain polybrominated diphenyl ethers (BDE-99) causes thyroid disruption and developmental toxicity in zebrafish[J]. Toxicology Applied Pharmacology, 2019, 372:11-18
|