有机硒F0代暴露对子代软骨发育的影响
Effect of Dietary Seleno-L-methionine on Cartilage Development in Offspring in Japanese medaka (Oryzias latipes)
-
摘要: 硒是生物体必需的微量元素。但硒的过量摄入也许会对动物和人体造成不利的影响。有机硒经由母体对下一世代(F1)的生长发育的影响尤其受到关注。用青鳉鱼作为动物模型,在父本单独暴露、母本单独暴露,以及父本、母本同时暴露于有机硒后,评价了其对F1代发育的影响。结果表明,5 μg·g-1的有机硒可造成F1代存活率降低、畸形率显著升高,特别是造成头部软骨畸形以及下颌突出等形态学的显著变化。SOX9a、SOX9b和Collagen2a1等基因表达与软骨发育密切相关,检测到有机硒可显著诱导这些基因的表达。研究表明,有机硒过量摄入对青鳉鱼F1代的毒性与软骨发育通路障碍相关。Abstract: Selenium (Se) is an essential trace element for organisms. Excessive uptake of selenium may adversely affect animals and humans. Data on the effects of Se on the development of offspring due to maternal transfer are relatively scarce and deserve more attention. In this study, the Japanese medaka (Oryzias latipes) was used as an animal model, and the effects of seleno-L-methionine (Se-Met) on the development of offspring from Se-exposed parents were evaluated. The offspring were obtained from different combinations including Se-exposed male×control female, Se-exposed female×control male, and Se-exposed male×Se-exposed female. The results showed that 5 μg·g-1 of Se-Met in the feed reduced the survival rate of the offspring and increased its deformity rate, especially the morphological changes of head cartilage and mandibular protrusion. The transcriptional expressions of SOX9a, SOX9b, and Collagen2a1 were stimulated by Se-Met, more pronounced in offspring from the parental fish both exposed to Se-Met. Our results demonstrate that excessive Se-Met may cause cartilage development disorders in offspring from Se-exposed parental medaka, which could be explained by the alterations in the transcriptions of genes involved in chondral development.
-
Key words:
- Se-Met /
- Oryzias latipes /
- developmental toxicity /
- malformation /
- transgenerational effect /
- F0 /
- F1
-
-
Finger Jr J W, Hamilton M T, Glenn T C, et al. Dietary selenomethionine administration in the American alligator (Alligator mississippiensis):Hepatic and renal Se accumulation and its effects on growth and body condition[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(3):439-448 赫丽娟, 蔡菊, 孔随飞. 有机硒在水产动物中的应用[J]. 饲料研究, 2011(9):33-34 He L J, Cai J, Kong S F. Application of organic selenium in aquatic animals[J]. Feed Research, 2011 (9):33-34(in Chinese)
Ogra Y, Ogihara Y, Anan Y. Comparison of the metabolism of inorganic and organic selenium species between two selenium accumulator plants, garlic and Indian mustard[J]. Metallomics, 2017, 9(1):61-68 Arakawa T, Sugiyama T, Matsuura H, et al. Effects of supplementary seleno-L-methionine on atopic dermatitis-like skin lesions in mice[J]. Biological & Pharmaceutical Bulletin, 2018, 41(9):1456-1462 李升和, 靳二辉, 周金星, 等. 有机硒在人和动物应用方面的研究进展[J]. 安徽科技学院学报, 2013, 27(1):1-5 Li S H, Jin E H, Zhou J X, et al. The research progress of applications of organic selenium in humans and animals[J]. Journal of Anhui Science and Technology University, 2013, 27(1):1-5(in Chinese)
谢凌天, 应光国, 陈红星, 等. 硒对水生生物双重生物效应的研究进展[J]. 华南师范大学学报:自然科学版, 2018, 50(5):52-59 Xie L T, Ying G G, Chen H X, et al. Dual effects of selenium in aquatic organisms:A review[J]. Journal of South China Normal University:Natural Science Edition, 2018, 50(5):52-59(in Chinese)
Muscatello J R, Janz D M. Selenium accumulation in aquatic biota downstream of a uranium mining and milling operation[J]. Science of the Total Environment, 2008, 407(4):1318-1325 Lemly A D. Symptoms and implications of selenium toxicity in fish:The Belews Lake case example[J]. Aquatic Toxicology, 2002, 57(1-2):39-49 Iwamatsu T. Stages of normal development in the medaka Oryzias latipes[J]. Mechanisms of Development, 2004, 121(7-8):605-618 Imada H, Hoki M, Suehiro Y, et al. Coordinated and cohesive movement of two small conspecific fish induced by eliciting a simultaneous optomotor response[J]. PloS One, 2010, 5(6):e11248 Whitlock K E, Westerfield M. The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate[J]. Development, 2000, 127(17):3645-3653 Conley J M, Watson A T, Xie L, et al. Dynamic selenium assimilation, distribution, efflux, and maternal transfer in Japanese medaka fed a diet of Se-enriched mayflies[J]. Environmental Science & Technology, 2014, 48(5):2971-2978 Thomas J K, Janz D M. In ovo exposure to selenomethionine via maternal transfer increases developmental toxicities and impairs swim performance in F1 generation zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2014, 152:20-29 Kinoshita M, Okamoto G, Hirata T, et al. Transgenic medaka enables easy oocytes detection in live fish[J]. Molecular Reproduction and Development, 2009, 76(2):202-207 Yoshinari N, Ando K, Kudo A,et al. Colored medaka and zebrafish:Transgenics with ubiquitous and strong transgene expression driven by the medaka beta-actin promoter[J]. Development, Growth & Differentiation, 2012, 54(9):818-828 Gerhart A K, Hecker M, Janz D M. Toxicity of aqueous L-selenomethionine exposure to early life-stages of the fathead minnow (Pimephales promelas)[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(3):323-328 Dong W, Hinton D E, Kullman S W. TCDD disrupts hypural skeletogenesis during medaka embryonic development[J]. Toxicological Sciences, 2012, 125(1):91-104 Chernick M, Ware M, Albright E, et al. Parental dietary seleno-L-methionine exposure and resultant offspring developmental toxicity[J]. Aquatic Toxicology, 2016, 170:187-198 Iwamatsu T. Growth of the medaka(Ⅲ)-Formation of scales[J]. Natural Sciences, 2014(63):59-66 Dong W, Macaulay L J, Kwok K W, et al. The PBDE metabolite 6-OH-BDE 47 affects melanin pigmentation and THRbeta MRNA expression in the eye of zebrafish embryos[J]. Endocrine Disruptors, 2014, 2(1). DOI:10.4161/23273739.2014.969072 Dong W, Macaulay L J, Kwok K W, et al. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish:A tool for examining OH-BDE toxicity to early life stages[J]. Aquatic Toxicology, 2013, 132-133:190-199 Dong W J, Wang F, Fang M L, et al. Use of biological detection methods to assess dioxin-like compounds in sediments of Bohai Bay, China[J]. Ecotoxicology and Environmental Safety, 2019, 173:339-346 McKim J M. Evaluation of tests with early life stages of fish for predicting long-term toxicity[J]. Journal of the Fisheries Board of Canada, 1977, 34(8):1148-1154 Choy S W, Cheng S H. Hedgehog signaling[J]. Vitamins and Hormones, 2012, 88:1-23 Bell D M, Leung K K, Wheatley S C, et al. SOX9 directly regulates the type-Ⅱ collagen gene[J]. Nature Genetics, 1997, 16(2):174-178 Klüver N, Kondo M, Herpin A, et al. Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization[J]. Development Genes and Evolution, 2005, 215(6):297-305 Schrauzer G. Anticarcinogenic effects of selenium[J]. Cellular and Molecular Life Sciences, 2000, 57(13-14):1864-1873 Thomas J K, Janz D M. Developmental and persistent toxicities of maternally deposited selenomethionine in zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2015, 49(16):10182-10189 Weber L P, Dube M G, Rickwood C J, et al. Effects of multiple effluents on resident fish from Junction Creek, Sudbury, Ontario[J]. Ecotoxicology and Environmental Safety, 2008, 70(3):433-445 -

计量
- 文章访问数: 1669
- HTML全文浏览数: 1669
- PDF下载数: 49
- 施引文献: 0