新型纳米CeO2催化类Fenton降解盐酸四环素

徐萍, 王娜, 文志潘, 王营茹, 明银安. 新型纳米CeO2催化类Fenton降解盐酸四环素[J]. 环境化学, 2020, (3): 601-609. doi: 10.7524/j.issn.0254-6108.2019103003
引用本文: 徐萍, 王娜, 文志潘, 王营茹, 明银安. 新型纳米CeO2催化类Fenton降解盐酸四环素[J]. 环境化学, 2020, (3): 601-609. doi: 10.7524/j.issn.0254-6108.2019103003
XU Ping, WANG Na, WEN Zhipan, WANG Yinru, MING Yinan. Degradation of tetracycline hydrochloride via a heterogeneous Fenton-like catalyzed by nano-CeO2[J]. Environmental Chemistry, 2020, (3): 601-609. doi: 10.7524/j.issn.0254-6108.2019103003
Citation: XU Ping, WANG Na, WEN Zhipan, WANG Yinru, MING Yinan. Degradation of tetracycline hydrochloride via a heterogeneous Fenton-like catalyzed by nano-CeO2[J]. Environmental Chemistry, 2020, (3): 601-609. doi: 10.7524/j.issn.0254-6108.2019103003

新型纳米CeO2催化类Fenton降解盐酸四环素

    通讯作者: 明银安, E-mail: myafxdfy@163.com
  • 基金项目:

    湖北省自然科学基金(2017CFB318)资助.

Degradation of tetracycline hydrochloride via a heterogeneous Fenton-like catalyzed by nano-CeO2

    Corresponding author: MING Yinan, myafxdfy@163.com
  • Fund Project: Supported by National Natural Science Foundation of Hubei Province (2017CFB318).
  • 摘要: 本研究分别以NaOH和NH3·H2O为矿化剂,Ce(NO33·6H2O为铈源,采用水热法成功制备两种新型纳米二氧化铈材料(CeO2-Na与CeO2-N).XRD、FESEM、Raman和EPR等表征手段以及非均相类Fenton降解盐酸四环素(TCH)性能分析结果表明,与CeO2-N相比,纳米CeO2-Na催化剂具有更大的比表面积和更高的表面氧空位浓度,其对TCH的催化性能也优于CeO2-N.在TCH初始浓度为100 mg·L-1,催化剂投加量为0.7 g·L-1和H2O2投加量为10 mmol·L-1的条件下,CeO2-Na/H2O2/TCH体系对TCH的去除率达86%,通过简单的热处理可以恢复催化剂的催化活性.TCH的降解机理研究表明,该非均相催化体系中起主要作用的是O2-·自由基.本研究为纳米氧化铈催化剂的制备及其非均相类Fenton的应用提供一定的技术和理论参考.
  • 加载中
  • [1] CONDE-CID M, FERNANDEZ-CALVINO D, NOVOA-MUNOZ J C, et al. Biotic and abiotic dissipation of tetracyclines using simulated sunlight and in the dark[J]. Science of the Total Environment, 2018, 635:1520-1529.
    [2] WAN D J, WU LR, LIU Y D, et al. Enhanced adsorption of aqueous tetracycline hydrochloride on renewable porous clay-carbon adsorbent derived from spent bleaching earth via pyrolysis[J]. Langmuir, 2019, 35(11):3925-3936.
    [3] CAO Y, LEI X Y, CHEN Q L, et al. Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 364:794-800.
    [4] RASHEED H U, LV X, WEI W, et al. Synthesis and studies of ZnO doped with g-C3N4 nanocomposites for the degradation of tetracycline hydrochloride under the visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2019, 7(3):103152.
    [5] LV C, LAN X F, WANG L L, et al. Rapidly and highly efficient degradation of tetracycline hydrochloride in wastewater by 3D IO-TiO2-CdS nanocomposite under visible light[J]. Environmental Technology, 2019(just-accepted):1-11.
    [6] LYU J Z, ZHOU Z, WANG Y H, et al. Platinum-enhanced amorphous TiO2-filled mesoporous TiO2 crystals for the photocatalytic mineralization of tetracycline hydrochloride[J]. Journal of Hazardous Materials, 2019, 373:278-284.
    [7] PANG Y X, KONG L J, LEI H Y, et al. Combined microwave-induced and photocatalytic oxidation using zinc ferrite catalyst for efficient degradation of tetracycline hydrochloride in aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93:397-404.
    [8] CHOE Y J, BYUN J Y, KIM S H, et al. Fe3S4/Fe7S8-promoted degradation of phenol via heterogeneous, catalytic H2O2 scission mediated by S-modified surface Fe2+ species[J]. Applied Catalysis B:Environmental, 2018, 233:272-280.
    [9] MUNOZ M, DE PEDRO Z M, CASAS J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation-A review[J]. Applied Catalysis B:Environmental, 2015, 176:249-265.
    [10] ZAZOULI MA, YOUSEFI Z, ESLAMI A, et al. Municipal solid waste landfill leachate treatment by fenton, photo-fenton and fenton-like processes:Effect of some variables[J]. Iranian Journal of Environmental Health Science & Engineering, 2012, 9(1):3-11.
    [11] JAIN B, SINGH AK, KIM H, et al. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes[J]. Environmental Chemistry Letters, 2018, 16(3):947-967.
    [12] 鞠喜, 漆璐, 刘晶静. 高级氧化技术-Fenton试剂处理合成烯丙异噻唑制程废水[J]. 水处理技术, 2012, 38(S1):118-120.

    JU X, QI L, LIU J J. Treatment of the synthesis of probenazole wastewater by advanced oxidation technology-Fenton reagent[J]. Technology of Water Treatment, 2012,38(S1):118-120(in Chinese).

    [13] 尹鹏, 陈海, 杨慧, 等. Fe3O4/CeO2-H2O2非均相类Fenton体系下降解TCE的研究[J]. 环境科学学报, 2018, 38(2):467-474.

    YIN P, CHEN H, YANG H,et al. Degradation of TCE by Fe3O4/CeO2-H2O2 heterogeneous Fenton-like system[J]. Acta Scientiae Circumstantiae, 2018, 38(2):467-474(in Chinese).

    [14] ZHANG Z, GUO Y, WANG Q, et al. Heterogeneous Fenton-like reactions with a novel hybrid Cu-Mn-O catalyst for the degradation of benzophenone-3 in aqueous media[J]. Comptes Rendus Chimie, 2017, 20(1):87-95.
    [15] CARRASCO-D AZ MR, CASTILLEJOS-L PEZ E, CERPA-NARANJO A, et al. Efficient removal of paracetamol using LaCu1-xMxO3 (M=Mn, Ti) perovskites as heterogeneous Fenton-like catalysts[J]. Chemical Engineering Journal, 2016, 304:408-418.
    [16] 赵晓娜, 张鹏, 赵义斐, 等. 金属卟啉衍生物催化降解污染物研究进展[J]. 环境化学, 2019, 38(9):2067-2080.

    ZHAO X N, ZHANG P, ZHAO Y F,et al. The degradation of pollutants catalyzed by metalloporphyrin derivatives[J]. Environmental Chemistry, 2019, 38(9):2067-2080(in Chinese).

    [17] 吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9):981-999.

    LV L, HU C. Heterogeneous Fenton catalytic water treatment technology and mechanism[J]. Progress in Chemistry, 2017, 29(9):981-999(in Chinese).

    [18] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275:121-135.
    [19] 赵国峥, 戚益, 李长波, 等. 微波辅助纳米CeO2/H2O2体系催化氧化苯酚的研究[J]. 中国稀土学报, 2015, 33(4):418-423.

    ZHAO G Z, QI Y, LI Z B,et al. Catalytic oxidation of phenol by microwave assisted CeO2/H2O2 system[J]. Journal of the Chinese Society of Rare Eaeths, 2015, 33(4):418-423(in Chinese).

    [20] ARENA F, ITALIANO C, SPADARO L. Efficiency and reactivity pattern of ceria-based noble metal and transition metal-oxide catalysts in the wet air oxidation of phenol[J]. Applied Catalysis B:Environmental, 2012, 115-116:336-345.
    [21] FENG B, SUGIYAMA I, HOJO H, et al. Atomic structures and oxygen dynamics of CeO2 grain boundaries[J]. Scientific Reports, 2016, 6(1):20288.
    [22] 田志茗, 勾金玲, 黄伟, 等. 纳米CeO2粒子光催化降解亚甲基蓝的研究[J]. 印染助剂, 2016, 33(5):21-24.

    TIAN Z M, GOU J L, HUANG W, et al. Study on methylene blue photodegradation using CeO2 nanoparticle as catalysts[J]. Textile Auxiliaries, 2016, 33(5):21-24(in Chinese).

    [23] DING Y, WANG J, XU S, et al. Oxygen vacancy of CeO2 improved efficiency of H2O2/O3 for the degradation of acetic acid in acidic solutions[J]. Separation and Purification Technology, 2018, 207:92-98.
    [24] MELO B C, PAULINO F A A, CARDOSO V A, et al. Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly(acrylic acid) hydrogel[J]. Carbohydrate Polymers, 2018, 181:358-367.
    [25] CAREY J J, NOLAN M. Enhancing the oxygen vacancy formation and migration in bulk chromium(Ⅲ) oxide by alkali metal doping:A change from isotropic to anisotropic oxygen diffusion[J]. Journal of Materials Chemistry A, 2017, 5(30):15613-15630.
    [26] WANG Y, SHEN X, CHEN F. Improving the catalytic activity of CeO2/H2O2 system by sulfation pretreatment of CeO2[J]. Journal of Molecular Catalysis A:Chemical, 2014, 381:38-45.
    [27] MA C, FU J, CHEN J, et al. Improving the surface properties of CeO2 by dissolution of Ce3+ to enhance the performance for catalytic wet air oxidation of phenol[J]. Industrial & Engineering Chemistry Research, 2017, 56(32):9090-9097.
    [28] ZANG C, ZHANG X, HU S, et al. The role of exposed facets in the Fenton-like reactivity of CeO2 nanocrystal to the Orange Ⅱ[J]. Applied Catalysis B:Environmental, 2017, 216:106-113.
    [29] JI P, WANG L, CHEN F, et al. Ce3+-centric organic pollutant elimination by CeO2 in the presence of H2O2[J]. Chem Cat Chem, 2010, 2(12):1552-1554.
    [30] WANG W, ZHU Q, QIN F, et al. Fe doped CeO2 nanosheets as Fenton-like heterogeneous catalysts for degradation of salicylic acid[J]. Chemical Engineering Journal, 2018, 333:226-239.
    [31] HE D, MILLER C J, WAITE T D. Fenton-like zero-valent silver nanoparticle-mediated hydroxyl radical production[J]. Journal of Catalysis, 2014, 317:198-205.
    [32] LI Y M, WANG S Y, ZHANG Y, et al. Enhanced tetracycline adsorption onto hydroxyapatite by Fe(Ⅲ) incorporation[J]. Journal of Molecular Liquids, 2017, 247:171-181.
    [33] 戴慧旺, 陈建新, 苗笑增, 等. 醇类对UV-Fenton体系羟基自由基淬灭效率的影响[J]. 中国环境科学, 2018, 38(1):202-209.

    DAI H W, CHEN J X, MIAO X Z, et al. Effect of alcohols on scavenging efficiencies to hydroxyl radical in UV-Fenton system[J]. China Environmental Science, 2018, 38(1):202-209(in Chinese).

    [34] DAI D J, YANG Z Y, YAO Y Y, et al. Highly efficient removal of organic contaminants based on peroxymonosulfate activation by iron phthalocyanine:mechanism and the bicarbonate ion enhancement effect[J]. Catalysis Science & Technology, 2017, 7(4):934-942.
    [35] GUO F R, WANG K J, LU J H, et al. Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals[J]. Chemosphere, 2019, 218:1071-1081.
  • 加载中
计量
  • 文章访问数:  2443
  • HTML全文浏览数:  2443
  • PDF下载数:  64
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-30

新型纳米CeO2催化类Fenton降解盐酸四环素

    通讯作者: 明银安, E-mail: myafxdfy@163.com
  • 武汉工程大学化学与环境工程学院, 武汉, 430205
基金项目:

湖北省自然科学基金(2017CFB318)资助.

摘要: 本研究分别以NaOH和NH3·H2O为矿化剂,Ce(NO33·6H2O为铈源,采用水热法成功制备两种新型纳米二氧化铈材料(CeO2-Na与CeO2-N).XRD、FESEM、Raman和EPR等表征手段以及非均相类Fenton降解盐酸四环素(TCH)性能分析结果表明,与CeO2-N相比,纳米CeO2-Na催化剂具有更大的比表面积和更高的表面氧空位浓度,其对TCH的催化性能也优于CeO2-N.在TCH初始浓度为100 mg·L-1,催化剂投加量为0.7 g·L-1和H2O2投加量为10 mmol·L-1的条件下,CeO2-Na/H2O2/TCH体系对TCH的去除率达86%,通过简单的热处理可以恢复催化剂的催化活性.TCH的降解机理研究表明,该非均相催化体系中起主要作用的是O2-·自由基.本研究为纳米氧化铈催化剂的制备及其非均相类Fenton的应用提供一定的技术和理论参考.

English Abstract

参考文献 (35)

目录

/

返回文章
返回