多孔氧化硅负载银催化剂催化消除VOCs的研究进展

陈丹, 田树梅, 石静, 沈华瑶. 多孔氧化硅负载银催化剂催化消除VOCs的研究进展[J]. 环境化学, 2020, (11): 3145-3152. doi: 10.7524/j.issn.0254-6108.2019082701
引用本文: 陈丹, 田树梅, 石静, 沈华瑶. 多孔氧化硅负载银催化剂催化消除VOCs的研究进展[J]. 环境化学, 2020, (11): 3145-3152. doi: 10.7524/j.issn.0254-6108.2019082701
CHEN Dan, TIAN Shumei, SHI Jing, SHEN Huayao. Research progress in catalytic elimination of VOCs by porous SiO2 supported silver catalysts[J]. Environmental Chemistry, 2020, (11): 3145-3152. doi: 10.7524/j.issn.0254-6108.2019082701
Citation: CHEN Dan, TIAN Shumei, SHI Jing, SHEN Huayao. Research progress in catalytic elimination of VOCs by porous SiO2 supported silver catalysts[J]. Environmental Chemistry, 2020, (11): 3145-3152. doi: 10.7524/j.issn.0254-6108.2019082701

多孔氧化硅负载银催化剂催化消除VOCs的研究进展

    通讯作者: 陈丹, E-mail: chendan@yzu.edu.cn
  • 基金项目:

    国家自然科学基金青年基金(21507109)和工业生态与环境工程教育部重点实验室开放基金(KLIEEE-17-02)资助.

Research progress in catalytic elimination of VOCs by porous SiO2 supported silver catalysts

    Corresponding author: CHEN Dan, chendan@yzu.edu.cn
  • Fund Project: Supported by National Nature Science Foundation of China (21507109) and Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE(KLIEEE-17-02).
  • 摘要: 挥发性有机污染物(VOCs)已成为目前我国主要的大气污染物之一,其中VOCs催化消除受到许多研究者的关注.多孔氧化硅材料由于其独特结构与性质,如高比表面积、可调孔径等在吸附、催化领域中受到广泛关注.鉴于此,本文结合本课题组研究成果,对近年来负载型银催化剂,以微孔,介孔与大孔氧化硅材料作为载体从催化剂的制备方法、载体种类、负载量、活性银物种分散度、银氧相互作用、形貌、预处理气氛与温度等因素对负载型银催化剂在VOCs催化反应性能影响进行了归纳和总结.
  • 加载中
  • [1] 沈学优,罗晓璐,朱利中. 空气中挥发性有机化合物的研究进展[J]. 浙江大学学报(理学版),2001,28(5):547-556. SHEN X Y,LUO X L,ZHU L Z. Research progress on volatile organic compounds in air[J]. Journal of Zhejiang University(Science Edition),2001,28(5):547-556(in Chinese).
    [2] 刘敏敏,王永强,赵朝成,等. 三维有序大孔钙钛矿催化剂在挥发性有机物催化燃烧中的研究进展[J]. 化工进展,2017,36(8):2934-2940.

    LIU M M,WANG Y Q,ZHAO C C,et al. Research progress of 3DOM perovskite catalyst for catalytic combustion of VOCs[J]. Chemical Progress, 2017, 36(8):2934-2940(in Chinese).

    [3] 徐倩. 室内空气中甲醛污染的监测与去除方法研究[D]. 济南:山东大学,2007. XU Q. Study on monitoring and removal of formaldehyde pollution in indoor air[D]. Jinan:Shandong University,2007(in Chinese).
    [4] WANG W, MA X, GRIMES S, et al. Study on the absorbability, regeneration characteristics and thermal stability of ionic liquids for VOCs removal[J]. Chemical Engineering Journal, 2017, 328:353-359.
    [5] 王旺阳, 刘聪, 袁珮. 吸附法去除环境中多环芳烃的研究进展[J]. 化工进展,2017,36(1):355-363.

    WANG W Y,LIU C,YUAN P. Research progress in removal of polycyclic aromatic hydrocarbons in environment by adsorption[J]. Chemical Progress, 2017, 36(1):355-363(in Chinese).

    [6] AZIZ A, KIM K S. Synergistic effect of UV pretreated Fe-ZSM-5 catalysts for heterogeneous catalytic complete oxidation of VOC:A technology development for sustainable use[J]. Journal of Hazardous Materials, 2017, 340:351-359.
    [7] 王克田. 苯装车过程的气体回收研究[D]. 大庆:大庆石油学院, 2005. WANG K T. Gas recovery in benzene loading process[D]. Daqing:Daqing Petroleum Institute,2005(in Chinese).
    [8] BELAISSAOU B, MOULLEC Y L, FAVRE E. Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air:A generic approach[J]. Energy, 2016, 95:291-302.
    [9] 王志伟, 耿春香, 安慧. 膜法回收有机蒸汽进展[J]. 环境科学与管理,2009,34(3):100-105.

    WANG Z W,GENG C X,AN H. Membrane recovery of organic vapor[J]. Environmental Science and Management, 2009, 34(3):100-105(in Chinese).

    [10] KAJAMA M N,SHEHU H,OKON E,et al. VOC oxidation in excess of oxygen using flow-through catalytic membrane reactor[J]. International Journal of Hydrogen Energy, 2016, 41:16529-16534.
    [11] 李玉华. 光催化氧化降解室内空气甲醛性能及数值模拟[D]. 哈尔滨:哈尔滨工业大学, 2007. LI Y H. Performance and numerical simulation of photocatalytic oxidation degradation of indoor air formaldehyde[D]. Harbin:Harbin Institute of Technology,2007(in Chinese).
    [12] GATICA J M, CASTIGLIONI J, SANTOS C, et al. Use of pillared clays in the preparation of washcoated clay honeycomb monoliths as support of manganese catalysts for the total oxidation of VOCs[J]. Catalysis Today, 2017, 296:84-94.
    [13] 李宣东, 吴晓宏. 微等离子体氧化法制备TiO2陶瓷膜的光催化活性研究[J]. 稀有金属,2003,27(6):661-664.

    LI X D,WU X H. Photocatalytic activity of TiO2 ceramic membrane prepared by micro-plasma oxidation[J]. Rare Metal, 2003, 27(6):661-664(in Chinese).

    [14] MUSTAFA M F,FU X,LIU Y,et al. Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor[J]. Journal of Hazardous Materials, 2018, 347:317-324.
    [15] 韩晓. 纤维负载锰氧化物催化剂的制备及其室温降解甲醛性能研究[D]. 北京:北京建筑大学,2015. HAN X. Preparation of fiber-supported manganese oxide catalysts and their degradation of formaldehyde at room temperature[D]. Beijing:Beijing Jianzhu University,2015(in Chinese).
    [16] ZHANG S,YOU J, KENNES C,et al. Current advances of VOCs degradation by bioelectrochemical systems:A review[J]. Chemical Engineering Journal, 2018, 334:2625-2637.
    [17] BAI B,QIAO Q,LI J,et al. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chinese Journal of Catalysis, 2016, 37:102-122.
    [18] SHU Y,JI J,XU Y,et al. Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation[J]. Applied Catalysis B:Environmental, 2018, 220:78-87.
    [19] LEIVA K,GARCIA R,SEPULVEDA C,et al. Conversion of guaiacol over supported ReOx catalysts:Support and metal loading effect[J]. Catalysis Today, 2017, 296:228-238.
    [20] TANIMU G,ASAOKA S,ALKHATTAF S. Effect of support in Ni-Bi-O/support catalyst on oxidative dehydrogenation of n-butane to butadiene[J]. Molecular Catalysis, 2017, 438:245-255.
    [21] 黄超,杨惠,杨旭,等. 介孔氧化硅负载贵金属催化剂研究进展[J]. 化工进展,2014,33(6):1459-1464.

    HUANG C,YANG H,YANG X,et al. Research progress on mesoporous silica supported noble metal catalysts[J]. Chemical Progress, 2014, 33(6):1459-1464(in Chinese).

    [22] KIM P S,KIM M K,CHO B K,et al. Effect of H2 on deNOx performance of HC-SCR over Ag/Al2O3:Morphological, chemical, and kinetic changes[J]. Journal of Catalysis, 2013, 301:65-76.
    [23] WANG A Q,LIU J H,LIN S D,et al. A novel efficient Au-Ag alloy catalyst system:Preparation, activity, and characterization[J]. Journal of Catalysis, 2005, 233:186-197.
    [24] YANG H L,MA C Y,LI Y,et al. Synthesis, characterization and evaluations of the Ag/ZSM-5 for ethylene oxidation at room temperature:Investigating the effect of water and deactivation[J]. Chemical Engineering Journal, 2018, 347:808-818.
    [25] DANTAS S C,ESCRITORI J C,SOARES R R,et al. Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane[J]. Chemical Engineering Journal, 2010, 156:380-387.
    [26] KRISHNA R,BATEN J M,Using molecular dynamics simulations for elucidation of molecular traffic in ordered crystalline microporous materials[J]. Microporous and Mesoporous Materials, 2018,258:151-169.
    [27] SILVA O S,SOUZA M J,Pedrosa A M G,et al. Development of HZSM-12 zeolite for catalytic degradation of high-density polyethylene[J]. Microporous and Mesoporous Materials, 2017, 244:1-6.
    [28] QIN C,HUANG X,ZHAO J,et al. Removal of toluene by sequential adsorption-plasma oxidation:Mixed support and catalyst deactivation[J]. Journal of Hazardous Materials, 2017, 334:29-38.
    [29] ELANGOVAN S P,OGURA M,Ernst S,et al. A comparative study of zeolites SSZ-33 and MCM-68 for hydrocarbon trap applications[J]. Microporous and Mesoporous Materials, 2006, 96:210-215.
    [30] WANG W,WANG H,ZHU T,et al. Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration[J]. Journal of Hazardous Materials, 2015, 292:70-78.
    [31] HERNANDEZ M A,ASOMOZA M,ROJAS F,et al. VOCs physisorption on micro-mesoporous solids:Application for dichloroethylene, trichloroethylene, and tetrachloroethylene on SiO2 and Ag/SiO2[J]. Journal of Environmental Chemical Engineering, 2013, 1:967-974.
    [32] HERNANDEZ M A,GONZALEZ A I,CORONA L,et al. Chlorobenzene, chloroform, and carbon tetrachloride adsorption on undoped and metal-doped sol-gel substrates (SiO2, Ag/SiO2, Cu/SiO2 and Fe/SiO2)[J]. Journal of Hazardous Materials, 2009, 162:254-263.
    [33] TRINH Q H,LEE S B,MOK Y S. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite[J]. Journal of Hazardous Materials, 2015, 285:525-534.
    [34] BHATIA S,WONG C T,ABDULLAH A Z. Optimization of air-borne butyl acetate adsorption on dual-function Ag-Y adsorbent-catalyst using response surface methodology[J]. Journal of Hazardous Materials, 2009, 164:1110-1117.
    [35] ASPROMONTE S G, SERRA R M,MIRO E E,et al. AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes[J]. Applied Catalysis A:General, 2011, 407:134-144.
    [36] WONG C T,ABDULLAH A Z,BHATIA S. Catalytic oxidation of butyl acetate over silver-loaded zeolites[J]. Journal of Hazardous Materials, 2008, 157:480-489.
    [37] WANG Y,DAI C,CHEN B,et al. Nanoscale HZSM-5 supported PtAg bimetallic catalysts for simultaneous removal of formaldehyde and benzene[J]. Catalysis Today, 2015, 258:616-626.
    [38] NANBA T,MASUKAWA S,UCHISAWA J,et al. Effect of support materials on Ag catalysts used for acrylonitrile decomposition[J]. Journal of Catalysis, 2008, 259:250-259.
    [39] BAEK S W,KIM J R,IHM S K. Design of dual functional adsorbent/catalyst system for the control of VOCs by using metal-loaded hydrophobic Y-zeolites[J]. Catalysis Today, 2004, 93-95:575-581.
    [40] WU Y,YUAN S,FENG R,et al. Comparative study for low-temperature catalytic oxidation of o-xylene over doped OMS-2 catalysts:Role of Ag and Cu[J]. Molecular Catalysis, 2017, 442:164-172.
    [41] LIU Y,LI X,LIU J,et al. Ozone catalytic oxidation of benzene over AgMn/HZSM-5 catalysts at room temperature:Effects of Mn loading and water content[J]. Chinese Journal of Catalysis, 2014,35:1465-1474.
    [42] LI J,NA H,ZENG X,et al. In situ DRIFTS investigation for the oxidation of toluene by ozone over Mn/HZSM-5, Ag/HZSM-5 and Mn-Ag/HZSM-5 catalysts[J]. Applied Surface Science, 2014, 311:690-696.
    [43] IZADKHAH B,NABAVI S R,NIAEI A,et al. Design and optimization of Bi-metallic Ag-ZSM5 catalysts for catalytic oxidation of volatile organic compounds[J]. Journal of Industrial and Engineering Chemistry, 2012, 18:2083-2091.
    [44] IVANOVAL R,GENOVAL I,KOVACHEVA D,et al. Effect of porous structure on the formation of active sites in manganese hosted in ordered mesoporous silica catalysts for environmental protection[J].Journal of Porous Materials, 2016, 23:1005-1013.
    [45] YANG C,WANG Z Z,ZHOU X C,et al. A mesoporous Pt-SBA-15 nano architecture with catalytic functions on oxidation of CO[J]. Journal of Porous Materials, 2011, 18:31-35.
    [46] PENG R,BALTRUSAITIS J,WU C M,et al. Pd-Ti-MCM-48 cubic mesoporous materials for solar simulated hydrogen evolution[J]. International Journal of Hydrogen Energy, 2015, 40:905-918.
    [47] SAREEN S,MUTREJA V,PAL B,et al. Synthesis of bimetallic Au-Ag alloyed mesocomposites and their catalytic activity for the reduction of nitroaromatics[J]. Surface Science, 2018, 435:552-562.
    [48] CHEN D,QU Z P,SHEN S,et al. Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde[J]. Catalysis Today, 2011, 175:338-345.
    [49] CHEN D,QU Z P,LV Y,et al. Effect of oxygen pretreatment on the surface catalytic oxidation of HCHO on Ag/MCM-41 catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2015, 404/405:98-105.
    [50] QU Z P,CHEN D,SUN Y,et al. High catalytic activity for formaldehyde oxidation of AgCo/APTES@MCM-41 prepared by two steps method[J]. Applied Catalysis A:General, 2014, 487:100-109.
    [51] CHEN D,QU Z P,ZHANG W,et al. TPD and TPSR studies of formaldehyde adsorption and surface reaction activity over Ag/MCM-41 catalysts[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 379:136-142.
    [52] QIN Y,QU Z P,DONG C,et al. Effect of pretreatment conditions on catalytic activity of Ag/SBA-15 catalyst for toluene oxidation[J]. Chinese Journal of Catalysis, 2017, 38:1603-1612.
    [53] QU Z P,SHEN S,CHEN D,et al. Highly active Ag/SBA-15 catalyst using post-grafting method for formaldehyde oxidation[J]. Journal of Molecular Catalysis A:Chemical, 2012, 356:171-177.
    [54] XU X,WANG P,XU W,et al. Plasma-catalysis of metal loaded SBA-15 for toluene removal:Comparison of continuously introduced and adsorption-discharge plasma system[J]. Chemical Engineering Journal, 2016, 283:276-284.
    [55] QU Z P,BU Y,QIN Y,et al. The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene[J]. Applied Catalysis B:Environmental, 2013, 132/133:353-362.
    [56] CHANG W S,LI Y C,CHUNG T W,et al. Toluene decomposition using silver vanadate/SBA-15 photocatalysts:DRIFTS study of surface chemistry and recyclability[J]. Applied Catalysis A:General, 2011, 407:224-230.
    [57] HAO N,TANG F,LI L. MCM-41 mesoporous silica sheet with ordered perpendicular nanochannels for protein delivery and the assembly of Ag nanoparticles in catalytic applications[J]. Microporous and Mesoporous Materials, 2015, 218:223-227.
    [58] QAYYUM E,CASTILLO V A,WARRINGTON K,et al. Methanol oxidation over silica-supported Pt and Ag nanoparticles:Toward selective production of hydrogen and carbon dioxide[J].Catalysis Communications, 2012, 28:128-133.
    [59] CZAPLINSKA J,SOBEZAK I,ZIOLEK M,et al. Bimetallic AgCu/SBA-15 system:The effect of metal loading and treatment of catalyst on surface properties[J]. Physical Chemistry, 2014, 118, 24:12796-12810.
    [60] KHARLAMOVA T,MAMONTOV G,SALAEV M,et al. Silica-supported silver catalysts modified by cerium/manganese oxides for total oxidation of formaldehyde[J]. Applied Catalysis A:General, 2013, 467:519-529.
    [61] VUNAIN E,NCUBE P,JALAMA K,et al. Confnement effect of rhodium(Ⅰ) complex species on mesoporous MCM-41 and SBA-15:Effect of pore size on the hydroformylation of 1-octen[J]. Journal of Porous Materials, 2018, 25:303-320.
    [62] ZHANG Y,DENG J,ZHANG L, et al. Preparation and catalytic performance of Fe-SBA-15 and FeOx/SBA-15 for toluene combustion[J]. Chinese Science Bulletin, 2014, 59, 31:3993-4002.
    [63] 赵福真,曾鹏晖,张广宏,等. Cu-Co/SBA-15催化剂的结构特征及其催化甲苯燃烧性能[J]. 催化学报,2010,31(3):335-342.

    ZHAO F Z,ZENG P H,ZHANG G H,et al. Structural characteristics of Cu-Co/SBA-15 catalysts and their catalytic performance for toluene combustion[J]. Journal of Catalysis, 2010, 31(3):335-342(in Chinese).

    [64] DENG J,ZHANG L,DAI H X,et al. In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts:High activity for the complete oxidation of toluene and ethyl acetate[J]. Catalysis A:General, 2009, 352:43-49.
    [65] HE C,LIJ J,CHENG J,et al. Comparative studies on porous material-supported Pd catalysts for catalytic oxidation of benzene, toluene, and ethyl acetate[J]. Industrial & Engineering Chemistry Research, 2009, 48:6930-6936.
    [66] YAN F W,ZHANG S F,GUO C Y,et al. Total oxidation of toluene over Pt-MCM-41 synthesized in a one-step process[J]. Catalysis Communications, 2009, 10:1689-1692.
    [67] PARK J I,LEE J K,MIYAWAKI J,et al. Catalytic oxidation of polycyclic aromatic hydrocarbons (PAHs) over SBA-15 supported metal catalysts[J]. Journal of Industrial and Engineering Chemistry, 2011, 17:271-276.
    [68] PEREZ H,NAVARRO P,TORRES G,et al. Evaluation of manganese OMS-like cryptomelane supported on SBA-15 in the oxidation of ethyl acetate[J]. Catalysis Today, 2013, 212:149-156.
    [69] 刘雨溪. 3DOM LaMnO3,Au/3DOM La0.6Sr0.4MnO3,Au/meso-Co3O4和3DOMBiVO4催化剂可控制备及有机污染物氧化的催化性能研究[D].北京:北京工业大学, 2013. LIU Y X. Catalytic performance of 3DOM LaMnO3,Au/3

    DOM La0.6Sr0.4MnO3,Au/meso-Co3O4 and 3DOMBiVO4 catalysts for controlled oxidation of organic pollutants[D]. Beijing:Beijing Industry University, 2013(in Chinese).

    [70] 戴洪兴, 邓积光, 夏云生,等. 三维有序介孔和大孔过渡金属氧化物的硬模板制备及催化应用[J]. 无机盐工业,2012,44(5):55-58.

    DAI H X,DENG J G,XIA Y S,et al. Hard template preparation and catalytic application of three-dimensional ordered mesoporous and macroporous transition metal oxides[J]. Inorganic salt industry, 2012, 44(5):55-58(in Chinese).

    [71] SERVE A,BOREAVE A,CARTOIXA B, et al. Synergy between Ag nanoparticles and yttria-stabilized zirconia for soot oxidation[J]. Applied Catalysis B:Environmental, 2019, 242:140-149.
    [72] GUNGOR N,ISCI S,GUNISTER E,et al. Characterization of sepiolite as a support of silver catalyst in soot combustion[J]. Applied Clay Science, 2006, 32:291-296.
    [73] 杨洪斌,李静,陈奇, 等. 介孔-大孔双孔结构二氧化硅块状材料的合成[J]. 硅酸盐学报,2006,34(1):21-25.

    YANG H B,LI J,CHEN Q,et al. Synthesis of mesoporous-macroporous double-porous silica bulk materials[J]. Journal of Silicate, 2006, 34(1):21-25(in Chinese).

    [74] 孙生萍. 多级孔钛硅分子筛的结构设计及其大分子烯烃选择性氧化反应性能评价[D]. 西安:西北大学, 2018. SUN S P. Structural design of multistage porous titanium silicate molecular sieves and evaluation of selective oxidation performance of macromolecular olefin[D]. Xi'an:Northwest University, 2018(in Chinese).
    [75] 陶海祥. 具有多级孔道结构的沸石分子筛的制备与催化性能的研究[D]. 上海:华东理工大学, 2013. TAO H X. Preparation and catalytic performance of zeolite molecular sieves with multistage porous structure[D]. Shanghai:East China University of Science and Technology, 2013(in Chinese).
    [76] 杨盟飞. 有机硅烷导向合成多级孔分子筛及其用于甲醇制取低碳烯烃反应[D]. 西安:西北大学, 2018. YANG M F. Organosilane-directed synthesis of multi-stage pore molecular sieves and their use in methanol to produce low-carbon olefins[D]. Xi'an:Northwest University, 2018(in Chinese).
    [77] 张锦锡. 多级空腔结构二氧化硅纳米复合材料的制备、表征及性能的研究[D]. 北京:北京化工大学, 2014. ZHANG J X. Preparation, characterization and properties of multistage cavity silica nanocomposites[D]. Beijing:Beijing University of Chemical Technology, 2014(in Chinese).
  • 加载中
计量
  • 文章访问数:  2833
  • HTML全文浏览数:  2833
  • PDF下载数:  66
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-27

多孔氧化硅负载银催化剂催化消除VOCs的研究进展

    通讯作者: 陈丹, E-mail: chendan@yzu.edu.cn
  • 扬州大学环境科学与工程学院, 扬州, 225127
基金项目:

国家自然科学基金青年基金(21507109)和工业生态与环境工程教育部重点实验室开放基金(KLIEEE-17-02)资助.

摘要: 挥发性有机污染物(VOCs)已成为目前我国主要的大气污染物之一,其中VOCs催化消除受到许多研究者的关注.多孔氧化硅材料由于其独特结构与性质,如高比表面积、可调孔径等在吸附、催化领域中受到广泛关注.鉴于此,本文结合本课题组研究成果,对近年来负载型银催化剂,以微孔,介孔与大孔氧化硅材料作为载体从催化剂的制备方法、载体种类、负载量、活性银物种分散度、银氧相互作用、形貌、预处理气氛与温度等因素对负载型银催化剂在VOCs催化反应性能影响进行了归纳和总结.

English Abstract

参考文献 (77)

目录

/

返回文章
返回