粒径对聚苯乙烯微塑料吸附环丙沙星的影响

刘鹏, 王焓钰, 吴小伟, 高士祥. 粒径对聚苯乙烯微塑料吸附环丙沙星的影响[J]. 环境化学, 2020, (11): 3153-3160. doi: 10.7524/j.issn.0254-6108.2019082802
引用本文: 刘鹏, 王焓钰, 吴小伟, 高士祥. 粒径对聚苯乙烯微塑料吸附环丙沙星的影响[J]. 环境化学, 2020, (11): 3153-3160. doi: 10.7524/j.issn.0254-6108.2019082802
LIU Peng, WANG Hanyu, WU Xiaowei, GAO Shixiang. Effects of particle size on the adsorption of ciprofloxacin on polystyrene microplastics[J]. Environmental Chemistry, 2020, (11): 3153-3160. doi: 10.7524/j.issn.0254-6108.2019082802
Citation: LIU Peng, WANG Hanyu, WU Xiaowei, GAO Shixiang. Effects of particle size on the adsorption of ciprofloxacin on polystyrene microplastics[J]. Environmental Chemistry, 2020, (11): 3153-3160. doi: 10.7524/j.issn.0254-6108.2019082802

粒径对聚苯乙烯微塑料吸附环丙沙星的影响

    通讯作者: 高士祥, E-mail: ecsxg@nju.edu.cn
  • 基金项目:

    国家自然科学基金(21876076)资助.

Effects of particle size on the adsorption of ciprofloxacin on polystyrene microplastics

    Corresponding author: GAO Shixiang, ecsxg@nju.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(21876076).
  • 摘要: 微塑料对环境污染物具有较高的吸附性能,然而粒径对微塑料吸附行为的影响数据仍较缺乏.本文以环丙沙星(CIP)为目标污染物,系统研究两种不同粒径聚苯乙烯微塑料(PS,8.8 μm和50.4 μm)对CIP的吸附行为.结果表明,两种粒径PS微塑料对CIP均有一定吸附效果,但8.8 μm PS微塑料的吸附性能明显高于50.4 μm.环境条件可影响PS微塑料对CIP的吸附行为,8.8 μm PS微塑料在中性和弱碱性pH下对CIP吸附性能最大,而对于50.4 μm PS微塑料,pH变化对其吸附性能的影响不明显.低温条件更有利于PS微塑料对CIP的吸附.PS微塑料对CIP的吸附动力学更符合准二级方程且吸附等温线可用Langmuir模型较好拟合,表明微塑料对CIP的吸附以表面单层吸附方式为主.同时,相对于超纯水体系,8.8 μm和50.4 μm PS微塑料在天然水环境对CIP的吸附性能极大降低,分别达到40.3%和78.8%,该现象可能是由于天然水体中的无机离子和有机物与CIP竞争吸附位点所致.本研究证实了小粒径微塑料重要的载体作用,为评价微塑料对环境污染物的迁移提供关键的科学依据.
  • 加载中
  • [1] GEYER R, JAMBECK J R, LAW K L, et al. Production, use, and fate of all plastics ever made[J]. Science Advence,2017, 3(7):1-5.
    [2] ZALASIEWICZ J, WATERS C N, IVAR DO SUL J A, et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene[J]. Anthropocene, 2016, 13:4-17.
    [3] EUROPE PLASTICS. Plastics-the facts 2017. An analysis of European latest plastics production, demand and waste data[EB/OL].[2019-01-09]. https://www.plasticseurope.org/en/resources/market-data.
    [4] BROWNE M A, CRUMP P, NIVEN S J, et al. Accumulation of microplastic on shorelines woldwide:Sources and sinks[J]. Environmental Science & Technology, 2011, 45:9175-9179.
    [5] LAMBERT S, WAGNER M. Characterisation of nanoplastics during the degradation of polystyrene[J]. Chemosphere, 2016, 145:265-268.
    [6] ARTHUR C, BAMFORD H, BAKER J. Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris (Sept 9-11, 2008)[C]. National Oceanic and Atmospheric Administration Technical Memorandum, 2009.
    [7] COLLIGNON A, HECQ J H, GALGANI F, et al. Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica)[J]. Marine Pollution Bulletin, 2014, 79(1/2):293-298.
    [8] LI R L, TAN H D, ZHANG L L, et al. The implications of water extractable organic matter (WEOM) on the sorption of typical parent, alkyl and N/O/S-containing polycyclic aromatic hydrocarbons (PAHs) by microplastics[J]. Ecotoxicology and Environmental Safety, 2018, 156:176-182.
    [9] ZHAN Z, WANG J, PENG J, et al. Sorption of 3,3',4,4'-tetrachlorobiphenyl by microplastics:A case study of polypropylene[J]. Marine Pollution Bulletin, 2016, 110(1):559-563.
    [10] HESKETT M, TAKADA H, YAMASHITA R, et al. Measurement of persistent organic pollutants (POPs) in plastic resin pellets from remote islands:Toward establishment of background concentrations for International Pellet Watch[J]. Marine Pollution Bulletin, 2012, 64(2):445-448.
    [11] XU B, LIU F, BROOKES P C, et al. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter[J]. Environmental Pollution, 2018, 240:87-94.
    [12] HOLMES L A, TURNER A, THOMPSON R C, et al. Adsorption of trace metals to plastic resin pellets in the marine environment[J]. Environmental Pollution, 2012,160(1):42-48.
    [13] WANG Z, CHEN M, ZHANG L, et al. Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China[J]. Science of The Total Environment, 2018, 628/629:1617-1626.
    [14] HUFFER T, HOFMANN T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution[J]. Environmental Pollution, 2016, 214:194-201.
    [15] GUO X, WANG X, ZHOU X, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers:Role of chemical and physical composition[J]. Environmental Science & Technology, 2012, 46(13):7252-7259.
    [16] VELZEBOER I, KWADIJK C J, KOELMANS A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes[J]. Environmental Science & Technology, 2014, 48(9):4869-4876.
    [17] AKDOGAN Z, GUVEN B. Microplastics in the environment:A critical review of current understanding and identification of future research needs[J]. Environmental Pollution, 2019, 254, 113011.
    [18] 刘隆勇,吴银宝.兽药环丙沙星的环境行为研究进展[C]//北京,中国畜牧兽医学会2013年学术年会论文集,2013:323. LIU L Y, WU Y B. Review on environmental behavior of ciprofloxacin[C]//Beijing, Chinese Association of Animal Science and Veterinary Medicine 2013 Annual Conference, 2013:323

    (in Chinese).

    [19] LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7):3579-3588.
    [20] ZHAO S, ZHU L, WANG T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China:First observations on occurrence, distribution[J]. Marine Pollution Bulletin, 2014, 86(1):562-568.
    [21] 陈守益,郭学涛,庞敬文.微塑料对泰乐菌素的吸附动力学与热力学[J].中国环境科学,2018,38(5):1905-1912.

    CHEN S Y, GUO X T, PANG J W, et al. Sorption kinetics and thermodynamics study of tylosin by microplastics[J]. China Environmental Science, 2018, 38(5):1905-1912(in Chinese).

    [22] HU J Q, YANG S Z, GUO L, et al. Microscopic investigation on the adsorption of lubrication oil on microplastics[J]. Journal of Molecular Liquids, 2017, 227:351-355.
    [23] LI J, ZHANG K, ZHANG H. Adsorption of antibiotics on microplastics[J]. Environmental Pollution, 2018, 237:460-467.
    [24] 王小玲,马杰,顾明华,等.砷和磷在不同污染类型土壤中的竞争吸附动力学[J].生态环境学报,2015,24(4):694-699.

    WANG X L, MA J, GU M H, et al. Competitive adsorption kinetics of arsenic and phosphorus in different kinds of contaminated soils[J]. Ecology and Environmental Sciences, 2015, 24(4):694-699(in Chinese).

    [25] YU R M, SHI Y Z, YANG D Z, et al. Graphene oxide/chitosan aerogel microspheres with honeycombcobweb and radially oriented microchannel structures for broadspectrum and rapid adsorption of water contaminants[J]. ACS Applied Materials Interfaces, 2017, 9:21809-21819.
    [26] 张凯娜,李嘉,李晓强,等.微塑料表面土霉素的吸附-解吸机制与动力学过程[J].环境化学,2017,36(12):2531-2540.

    ZHANG K N, LI J, LI X Q, et al. Mechanisms and kinetics of oxytetracycline adsorption-desorption onto microplastics[J]. Environmental Chemistry, 2017, 36(12):2531-2540(in Chinese).

    [27] LIU G, ZHU Z, YANG Y, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J]. Environmental Pollution, 2019, 246:26-33.
    [28] WU Q F, LI Z H, HONG H L, et al. Desorption of ciprofloxacin from clay mineral surfaces[J]. Water Research, 2013, 47:259-268.
    [29] SHEN X C, LI D C, SIMA X F, et al. The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column[J]. Environmental Research, 2018, 166:377-383.
    [30] HOLMES L A, TURNER A, THOMPSON R C. Adsorption of trace metals to plastic resin pellets in the marine environment[J]. Environmental Pollution, 2012, 160(1):42-48.
  • 加载中
计量
  • 文章访问数:  1986
  • HTML全文浏览数:  1986
  • PDF下载数:  87
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-28

粒径对聚苯乙烯微塑料吸附环丙沙星的影响

    通讯作者: 高士祥, E-mail: ecsxg@nju.edu.cn
  • 南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京, 210046
基金项目:

国家自然科学基金(21876076)资助.

摘要: 微塑料对环境污染物具有较高的吸附性能,然而粒径对微塑料吸附行为的影响数据仍较缺乏.本文以环丙沙星(CIP)为目标污染物,系统研究两种不同粒径聚苯乙烯微塑料(PS,8.8 μm和50.4 μm)对CIP的吸附行为.结果表明,两种粒径PS微塑料对CIP均有一定吸附效果,但8.8 μm PS微塑料的吸附性能明显高于50.4 μm.环境条件可影响PS微塑料对CIP的吸附行为,8.8 μm PS微塑料在中性和弱碱性pH下对CIP吸附性能最大,而对于50.4 μm PS微塑料,pH变化对其吸附性能的影响不明显.低温条件更有利于PS微塑料对CIP的吸附.PS微塑料对CIP的吸附动力学更符合准二级方程且吸附等温线可用Langmuir模型较好拟合,表明微塑料对CIP的吸附以表面单层吸附方式为主.同时,相对于超纯水体系,8.8 μm和50.4 μm PS微塑料在天然水环境对CIP的吸附性能极大降低,分别达到40.3%和78.8%,该现象可能是由于天然水体中的无机离子和有机物与CIP竞争吸附位点所致.本研究证实了小粒径微塑料重要的载体作用,为评价微塑料对环境污染物的迁移提供关键的科学依据.

English Abstract

参考文献 (30)

目录

/

返回文章
返回