稀土镧改性聚合硫酸铁机理分析及其应用
Mechanism analysis and application of PFS modified by lanthanum
-
摘要: 为进一步提高无机高分子絮凝剂的处理效果并降低处理成本,研究"一步法"絮凝剂制备工艺,同时引入稀土镧对絮凝剂进行改性处理,制备固体稀土镧聚合硫酸铁絮凝剂(La-PFS).实验通过响应面优化絮凝性能,研究结果表明.聚合温度为123 ℃、镧铁摩尔比为1∶105.56、OH-/Fe摩尔比为0.19时,制备产品对高浊度废水除浊效率效果达到99.41%.引入稀土镧在一定程度上增长絮凝剂链状结构,增强吸附能力.在对造纸废水处理中,稀土镧聚合硫酸铁对造纸废水处理效果明显优于传统市售絮凝剂,絮凝沉淀速度有较大提升,浊度去除率达到68%,CODCr去除率达到35%.Abstract: To further improve the processing effect of inorganic polymer flocculants and to reduce the processing cost, we studied "one-step process" for the preparation technique of flocculants and introduced rare earth element lanthanum to modify the nature of flocculants, prepared solidly rare earth lanthanum polymerized ferric sulfate (La-PFS). Flocculating performance was optimized by response surface in this experiment. The results showed that when the temperature of polymerization was 123 ℃, the molar ratio of lanthanum to iron was 1∶105.56 and OH-/Fe molar ratio was 0.19, the de-turbidity efficiency of the preparation product on high turbidity wastewater was 99.41%. The introduction of rare earth lanthanum increased the chain structure of flocculants to a certain extent and enhanced the capacity of adsorption. In the treatment of paper-making wastewater, the effect of rare earth lanthanum polymerized ferric sulfate on paper-making wastewater treatment was significantly better than that of traditionally commercially available flocculants. The precipitation rate of flocculation was greatly improved, the removal rate of turbidity reached 68%, and the removal rate of CODCr reached 35%.
-
Key words:
- one-step process /
- La-PFS /
- material preparation /
- mechanism analysis /
- paper-making wastewater
-
[1] 黄祥. 废水处理复合絮凝剂研究进展[J]. 安徽农业科学, 2012(7):4153-4155. HUANG X. Research progress of composite flocculants for wastewater treatment[J]. Anhui Agricultural Science, 2012 (7):4153-4155(in Chinese).
[2] SUN Y, ZHU C, ZHENG H, et al. Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment[J]. Chemical Engineering Research & Design, 2017, 119:23-32. [3] 佟瑞利, 赵娜娜, 刘成蹊, 等. 无机、有机高分子絮凝剂絮凝机理及进展[J]. 煤炭与化工, 2007, 30(3):3-6. DONG R L, ZHAO N N, LIU C X, et al. Flocculation mechanism and development of inorganic and organic polymer flocculants[J]. Coal and Chemical Industry, 2007, 30(3):3-6(in Chinese).
[4] 孟欣, 田淑英, 张平. 探讨我国水资源保护的现状及治理对策[J]. 中国化工贸易, 2015, 7(26):207-208. MENG X, TIAN S Y, ZHANG P. Discussion on the current situation of water resources protection and Countermeasures[J]. China Chemical Trade, 2015, 7(26):207-208(in Chinese).
[5] 张列宇, 王浩, 李国文, 等. 城市黑臭水体治理技术及其发展趋势[J]. 环境保护, 2017, 45(5):62-65. ZHANG L Y, WANG H, LI G W, et al. Treatment technology and development trend of urban black and odorous water body[J]. Environmental Protection, 2017, 45(5):62-65(in Chinese).
[6] 蔡阳伦, 戚政武, 林楚宏, 等. 聚合硫酸铁的制备及应用研究进程[J]. 化学工程与装备, 2016(11):168-169. CAI Y L, QI Z W, LIN C H, et al. Preparation and application of polymeric ferric sulfate[J]. Chemical Engineering and Equipment, 2016 (11):168-169(in Chinese).
[7] 余伟, 黄牧, 李爱民, 等. 多功能型天然高分子水处理剂的研究[J]. 环境化学, 2018, 37(6):1293-1310. YU W, HUANG M, LI A M, et al. Multi-functional natural polymer based water treatment agents[J]. Environmental Chemistry, 2018, 37(6):1293-1310.
[8] 关晓辉, 王维雪, 刘雅琪, 等. 固体生物聚合硫酸铁的制备及其结构和性能研究[J]. 东北电力大学学报, 2015, 35(4):26-32. GUAN X H, WANG W X, LIU Y Q, et al. Preparation, structure and properties of solid biopolyferric sulfate[J]. Journal of Northeast Electric Power University, 2015, 35(4):26-32(in Chinese).
[9] 宋艳艳, 郭睿, 卫海琴, 等. 聚铁基改性复合絮凝剂的制备及其絮凝性能[J]. 精细石油化工, 2014, 31(3):34-38. SONG Y Y, GUO R, WEI H Q, et al. Preparation and flocculation performance of polyferric modified composite flocculant[J]. Fine Petrochemicals, 2014, 31(3):34-38(in Chinese).
[10] 曹健, 刁益韶. 稀土在改性无机复合高分子絮凝剂中的应用[J]. 轻工科技, 2016, 217(12):79-80. CAO J, DIAO Y Y. Application of rare earth in modified inorganic composite polymer flocculant[J]. Light Industry Technology, 2016, 217(12):79-80(in Chinese).
[11] JIA D, LI M, LIU G, et al. Effect of basicity and sodium ions on stability of polymeric ferric sulfate as coagulants[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2017, 512:111-117. [12] 许嘉, 王瑞芬, 孙忠. 稀土复合絮凝剂的制备及其絮凝性能研究[J]. 稀土, 2013, 34(2):91-95. XU J, WANG R F, SUN Z. Study on the preparation and flocculation performance of rare earth composite flocculant[J]. Rare Earth, 2013, 34(2):91-95(in Chinese).
[13] 贺忠翔. 稀土复合混凝剂的制备及其在城市污水处理中的应用[J]. 稀土, 2007, 28(4):67-70. HE Z X. Preparation of rare earth composite coagulant and its application in municipal wastewater treatment[J]. Rare Earth, 2007, 28(4):67-70(in Chinese).
[14] 董亚梅, 王婷, 万晓佳, 等. 稀土复合吸附絮凝剂对印染废水的处理研究[J]. 环境科学与技术, 2015, 38(9):152-156. DONG Y M, WANG T, WAN X J, et al. Study on the treatment of printing and dyeing wastewater with rare earth composite adsorption flocculant[J]. Environmental Science and Technology, 2015, 38(9):152-156(in Chinese).
[15] FU H, YANG Y, ZHU R, et al. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite[J].Journal of Colloid and Interface Science, 2018, 530:704-713. [16] 张会琴, 袁华为, 王昕伟, 等. 响应面法优化处理草甘膦生产废水的应用[J]. 净水技术, 2017, 36(8):46-51. ZHANG H Q, YUAN H W, WANG X W, et al. Application of response surface method in the treatment of glyphosate wastewater[J]. Water Purification Technology, 2017, 36(8):46-51(in Chinese).
[17] 郝海艳, 王刚, 徐敏, 等. 响应面法优化制备螯合絮凝剂巯基乙酰化聚丙烯酰胺[J]. 环境化学, 2016, 35(6):1269-1279. HAO H Y, WANG G, XU M, et al. Optimization of preparation conditions of chelating flocculant with mercaptoacetyl polyacrylamide by response surface methodology[J]. Environmental Chemistry, 2016, 35(6):1269-1279.
[18] 方润, 薛涵与, 吴华忠, 等. 一锅法溶液缩聚制备高效阳离子絮凝剂及其絮凝性能[J]. 环境化学, 2018, 37(12):2668-2676. FANG R, XUE H Y, WU H Z, et al. Synthesis of an efficient cationic flocculant by one-pot solution polycondensation and its flocculation performance[J]. Environmental Chemistry, 2018, 37(12):2668-2676(in Chincese).
[19] 张鹏, 王雨露, 赵冬琴, 等. 聚磷氯化铁镁钛混凝剂的制备与表征[J]. 环境化学, 2018, 37(12):2677-2687. ZHANG P, WANG Y L, ZHAO D Q, et al. Preparation and characterization of polychlorinated ferric magnesium titanium(PFMTC)[J]. Environmental Chemistry, 2018, 37(12):2677-2687(in Chincese).
[20] 马明玉. Fe-Ca仿酶降解木素机理及深度处理造纸中段废水的研究[D]. 济南:山东轻工业学院, 2011. MA M Y. Study on degradation mechanism of lignin by Fe-Ca imitation enzyme and advanced treatment of papermaking wastewater[D]. Ji'nan:Shandong Institute of Light Industry, 2011(in Chinese). [21] 马红钦, 谭欣, 朱慧铭, 等. La1-xCexFeO3钙钛石高变催化剂的XPS研究[J]. 中国稀土学报, 2003, 21(4):445-448. MA H Q, TAN X, ZHU H M, et al. XPS study on La1-xCexFeO3 calcium titanite high temperature shift catalyst[J]. Chinese Journal of Rare Earth, 2003, 21(4):445-448(in Chinese).
[22] LIU J W, HAN R, WANG H T, et al. Degradation of PCP-Na with La-B co-doped TiO2 series synthesized by the sol-gel hydrothermal method under visible and solar light irradiation[J]. Journal of Molecular Catalysis A Chemical, 2011, 344(1):145-152. [23] 常青, 汤鸿霄. 聚合铁的形态特征和凝聚-絮凝机理[J]. 环境科学学报, 1985, 5(2):185-194. CHANG Q, TANG H X. Morphology and coagulation flocculation mechanism of polymeric iron[J]. Journal of Environmental Science, 1985, 5(2):185-194(in Chinese).
计量
- 文章访问数: 2313
- HTML全文浏览数: 2313
- PDF下载数: 34
- 施引文献: 0