亚硝酸盐存在下4-氯酚在硫酸根自由基高级氧化工艺中的转化及硝基氯酚的生成
Transformation of 4-chlorophenol and formation of chloronitrophenol in a sulfate radical-based advanced oxidation process in the presence of nitrite
-
摘要: 硫酸根自由基(SO4·-)高级氧化工艺(SR-AOPs)被广泛应用于土壤和地下水污染修复,然而其使用过程中生成的有毒有害副产物尚未引起重视.本研究以热活化过硫酸盐(PS)为反应体系,考察亚硝酸盐(NO2-)对4-氯酚(4CP)转化和产物生成的影响.色谱-质谱联用分析表明, SO4·-可介导亚硝态氮掺入4CP分子结构,生成4-氯-2-硝基酚(4C2NP).4C2NP的生成是4CP酚氧自由基(ClPhO·)与二氧化氮自由基(NO2·)相互耦合的结果.在50 μmol·L-1 4CP、 2 mmol·L-1 PS、溶液pH 7.0、加热温度50 ℃、NO2-浓度50—400 μmol·L-1条件下,4C2NP产率介于57.9%—91.8%之间.在中性pH条件下,4C2NP在热活化PS体系中可发生进一步转化.增加NO2-浓度稍微抑制了4CP的转化,却显著提高了4C2NP的产率.Suwannee河富里酸(SRFA)的存在缓减了4CP的转化,但4CP转化生成4C2NP仍然是其消亡的主要途径.结果说明,在NO2-存在下,采用SR-AOPs处理氯酚可生成具有"三致"效应的硝基氯酚,必须引起足够重视.Abstract: Sulfate radical (SO4·-)-based advanced oxidation processes (SR-AOPs) are widely used for remediation of contaminated groundwater and soil. However, the potential formation of hazardous by-products has received little attention. This study investigated the influences of nitrite (NO2-) on the transformation of 4-chlorophenol (4CP) and the formation of by-products in the thermally activated persulfate (PS) oxidation process. Analysis of liquid chromatography-mass spectrometry showed that NO2- could induce the incorporation of nitrite nitrogen into 4CP, leading to the formation of 4-chloro-2-nitrophenol (4C2NP). The formation of 4C2NP was a result of the combination of 4CP phenoxyl radical and nitrogen dioxide radical (NO2·). Under the reaction condition of 50 μmol·L-1 4CP, 2 mmol·L-1 PS, pH 7.0, and 50 ℃, the yield of 4C2NP ranged from 57.9% to 91.8% with NO2- concentration of 50 to 400 μmol·L-1. At neutral pH condition, 4C2NP was subject to further transformation in the thermally activated PS system. Increasing NO2- concentration inhibited the transformation of 4CP slightly but enhanced the formation of 4C2NP significantly. The presence of Suwannee River fulvic acid (SRFA) retarded the transformation of 4CP. However, nitration to 4C2NP was still a predominant pathway. These results reveal that SO4·--based advanced oxidation of chlorophenols in the presence of NO2- can produce toxic chloronitrophenols, which should receive adequate attention.
-
Key words:
- sulfate radical /
- thermally activated persulfate /
- 4-chlorophenol /
- chloronitrophenol /
- nitration
-
-
[1] TISTONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate:A review[J]. Critical Review of Environmental Science Technology, 2010, 40:55-91. [2] 谷得明, 郭昌胜, 冯启言,等. 2018.基于硫酸根自由基的高级氧化技术及其在环境治理中的应用[J]. 环境化学, 2018, 37(11):2489-2508. GU D, GUO C, FENG Q, et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation[J]. Environmental Chemistry, 2018, 37(11):2489-2508(in Chinese).
[3] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation:A review[J]. Chemosphere, 2016, 151:178-188. [4] LIU K, LU J, JI Y. Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol[J]. Water Research, 2015, 84:1-7. [5] WANG Y, LE ROUX J, ZHANG T, et al. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process[J]. Environmental Science Technology, 2014, 48:14534-14542. [6] HONG H, QIAN L, XIAO Z, et al. Effect of nitrite on the formation of halonitromethanes during chlorination of organic matter from different origin[J]. Journal of Hydrology, 2015, 531:802-809. [7] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal Physical Chemistry Reference Data, 1988, 17(3):1027-1284. [8] ANIPSITAKIS G P, DIONYSIOU D D, GONZALEZ M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions[J]. Environmental Science Technology, 2006, 40:1000-1007. [9] JI Y, WANG L, JIANG M, et al. The role of nitrite in sulfate radical-based degradation of phenolic compounds:An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation (ISCO)[J]. Water Research, 2017, 123:249-257. [10] DZENGEL J, THEURICH J, BAHNEMANN D W. Formation of nitroaromatic compounds in advanced oxidation processes:Photolysis versus photocatalysis[J]. Environmental Science Technology, 1999, 33:294-300. [11] KOVACIC P, SOMANATHAN R. Nitroaromatic compounds:environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism[J]. Journal of Applied Toxicology, 2014, 34:810-824. [12] CZAPLICKA M. Source and transformation of chlorophenols in the natural environment[J]. Science of the Total Environment, 2004, 322:21-39. [13] JI Y, YANG Y, WANG L, et al. Sulfate radical-induced incorporation of NO2 group into chlorophenols[J]. Environmental Chemistry Letters, 2019, 17:1111-1116. [14] BARZEGAR G, JORFI S, ZAREZADE V, et al. 4-chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron:Reusability, identification of degradation intermediates and potential application for real wastewater[J]. Chemosphere, 2018, 201:370-379. [15] JI Y, SHI Y, YANG Y, et al. Rethinking sulfate radical-based oxidation of nitrophenols:Formation of toxic polynitrophenols, nitrated biphenyls and diphenyl ethers[J]. Journal of Hazardous Materials, 2019, 361:152-161. [16] ZHAO D, LIAO X, YAN X, et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil[J]. Journal of Hazardous Materials, 2013, 254-255:228-235. [17] BEDINI A, MAURINO V, MINERO C, et al. Theoretical and experimental evidence of the photonitration pathway of phenol and 4-chlorophenols:A mechanistic study of environmental significance[J]. Photochemistry Photobiology Science, 2012, 11:418-424. [18] TOGNAZZI A, DATTILO A M, BRACCHINI L, et al. Chemical characterization of a new estuarine pollutant (2,4-dichloro-6-nitrophenol) and assessment of the acute toxicity of its quinoid form for Artemia salina[J]. International Journal of Environmental Analytical Chemistry, 2012, 92(15):1679-1688. [19] JI Y, SHI Y, WANG L, et al. Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine:Formation of SO2 extrusion products and effects of natural organic matter[J]. Science of the Total Environment, 2017, 593-594:704-712. [20] ZHOU L, SLEIMAN M, FERRONATO C, et al. Reactivity of sulfate radicals with natural organic matters[J]. Environmental Chemistry Letters, 2017, 15:733-737. [21] MINERO C, CHIRON S, FALLETTI G, et al. Photochemical processes involving nitrite in surface water samples[J]. Aquatic Science, 2007, 69:71-85. -

计量
- 文章访问数: 2828
- HTML全文浏览数: 2828
- PDF下载数: 133
- 施引文献: 0