亚硝酸盐存在下4-氯酚在硫酸根自由基高级氧化工艺中的转化及硝基氯酚的生成

季跃飞, 赵旭蕾, 张藤, 陆隽鹤. 亚硝酸盐存在下4-氯酚在硫酸根自由基高级氧化工艺中的转化及硝基氯酚的生成[J]. 环境化学, 2020, (4): 852-858. doi: 10.7524/j.issn.0254-6108.2019040103
引用本文: 季跃飞, 赵旭蕾, 张藤, 陆隽鹤. 亚硝酸盐存在下4-氯酚在硫酸根自由基高级氧化工艺中的转化及硝基氯酚的生成[J]. 环境化学, 2020, (4): 852-858. doi: 10.7524/j.issn.0254-6108.2019040103
JI Yuefei, ZHAO Xulei, ZHANG Teng, LU Junhe. Transformation of 4-chlorophenol and formation of chloronitrophenol in a sulfate radical-based advanced oxidation process in the presence of nitrite[J]. Environmental Chemistry, 2020, (4): 852-858. doi: 10.7524/j.issn.0254-6108.2019040103
Citation: JI Yuefei, ZHAO Xulei, ZHANG Teng, LU Junhe. Transformation of 4-chlorophenol and formation of chloronitrophenol in a sulfate radical-based advanced oxidation process in the presence of nitrite[J]. Environmental Chemistry, 2020, (4): 852-858. doi: 10.7524/j.issn.0254-6108.2019040103

亚硝酸盐存在下4-氯酚在硫酸根自由基高级氧化工艺中的转化及硝基氯酚的生成

    通讯作者: 陆隽鹤, E-mail: jhlu@njau.edu.cn
  • 基金项目:

    国家自然科学基金(21607077)资助.

Transformation of 4-chlorophenol and formation of chloronitrophenol in a sulfate radical-based advanced oxidation process in the presence of nitrite

    Corresponding author: LU Junhe, jhlu@njau.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21607077).
  • 摘要: 硫酸根自由基(SO4·-)高级氧化工艺(SR-AOPs)被广泛应用于土壤和地下水污染修复,然而其使用过程中生成的有毒有害副产物尚未引起重视.本研究以热活化过硫酸盐(PS)为反应体系,考察亚硝酸盐(NO2-)对4-氯酚(4CP)转化和产物生成的影响.色谱-质谱联用分析表明, SO4·-可介导亚硝态氮掺入4CP分子结构,生成4-氯-2-硝基酚(4C2NP).4C2NP的生成是4CP酚氧自由基(ClPhO·)与二氧化氮自由基(NO2·)相互耦合的结果.在50 μmol·L-1 4CP、 2 mmol·L-1 PS、溶液pH 7.0、加热温度50 ℃、NO2-浓度50—400 μmol·L-1条件下,4C2NP产率介于57.9%—91.8%之间.在中性pH条件下,4C2NP在热活化PS体系中可发生进一步转化.增加NO2-浓度稍微抑制了4CP的转化,却显著提高了4C2NP的产率.Suwannee河富里酸(SRFA)的存在缓减了4CP的转化,但4CP转化生成4C2NP仍然是其消亡的主要途径.结果说明,在NO2-存在下,采用SR-AOPs处理氯酚可生成具有"三致"效应的硝基氯酚,必须引起足够重视.
  • 加载中
  • [1] TISTONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate:A review[J]. Critical Review of Environmental Science Technology, 2010, 40:55-91.
    [2] 谷得明, 郭昌胜, 冯启言,等. 2018.基于硫酸根自由基的高级氧化技术及其在环境治理中的应用[J]. 环境化学, 2018, 37(11):2489-2508.

    GU D, GUO C, FENG Q, et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation[J]. Environmental Chemistry, 2018, 37(11):2489-2508(in Chinese).

    [3] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation:A review[J]. Chemosphere, 2016, 151:178-188.
    [4] LIU K, LU J, JI Y. Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol[J]. Water Research, 2015, 84:1-7.
    [5] WANG Y, LE ROUX J, ZHANG T, et al. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process[J]. Environmental Science Technology, 2014, 48:14534-14542.
    [6] HONG H, QIAN L, XIAO Z, et al. Effect of nitrite on the formation of halonitromethanes during chlorination of organic matter from different origin[J]. Journal of Hydrology, 2015, 531:802-809.
    [7] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal Physical Chemistry Reference Data, 1988, 17(3):1027-1284.
    [8] ANIPSITAKIS G P, DIONYSIOU D D, GONZALEZ M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions[J]. Environmental Science Technology, 2006, 40:1000-1007.
    [9] JI Y, WANG L, JIANG M, et al. The role of nitrite in sulfate radical-based degradation of phenolic compounds:An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation (ISCO)[J]. Water Research, 2017, 123:249-257.
    [10] DZENGEL J, THEURICH J, BAHNEMANN D W. Formation of nitroaromatic compounds in advanced oxidation processes:Photolysis versus photocatalysis[J]. Environmental Science Technology, 1999, 33:294-300.
    [11] KOVACIC P, SOMANATHAN R. Nitroaromatic compounds:environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism[J]. Journal of Applied Toxicology, 2014, 34:810-824.
    [12] CZAPLICKA M. Source and transformation of chlorophenols in the natural environment[J]. Science of the Total Environment, 2004, 322:21-39.
    [13] JI Y, YANG Y, WANG L, et al. Sulfate radical-induced incorporation of NO2 group into chlorophenols[J]. Environmental Chemistry Letters, 2019, 17:1111-1116.
    [14] BARZEGAR G, JORFI S, ZAREZADE V, et al. 4-chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron:Reusability, identification of degradation intermediates and potential application for real wastewater[J]. Chemosphere, 2018, 201:370-379.
    [15] JI Y, SHI Y, YANG Y, et al. Rethinking sulfate radical-based oxidation of nitrophenols:Formation of toxic polynitrophenols, nitrated biphenyls and diphenyl ethers[J]. Journal of Hazardous Materials, 2019, 361:152-161.
    [16] ZHAO D, LIAO X, YAN X, et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil[J]. Journal of Hazardous Materials, 2013, 254-255:228-235.
    [17] BEDINI A, MAURINO V, MINERO C, et al. Theoretical and experimental evidence of the photonitration pathway of phenol and 4-chlorophenols:A mechanistic study of environmental significance[J]. Photochemistry Photobiology Science, 2012, 11:418-424.
    [18] TOGNAZZI A, DATTILO A M, BRACCHINI L, et al. Chemical characterization of a new estuarine pollutant (2,4-dichloro-6-nitrophenol) and assessment of the acute toxicity of its quinoid form for Artemia salina[J]. International Journal of Environmental Analytical Chemistry, 2012, 92(15):1679-1688.
    [19] JI Y, SHI Y, WANG L, et al. Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine:Formation of SO2 extrusion products and effects of natural organic matter[J]. Science of the Total Environment, 2017, 593-594:704-712.
    [20] ZHOU L, SLEIMAN M, FERRONATO C, et al. Reactivity of sulfate radicals with natural organic matters[J]. Environmental Chemistry Letters, 2017, 15:733-737.
    [21] MINERO C, CHIRON S, FALLETTI G, et al. Photochemical processes involving nitrite in surface water samples[J]. Aquatic Science, 2007, 69:71-85.
  • 加载中
计量
  • 文章访问数:  2828
  • HTML全文浏览数:  2828
  • PDF下载数:  133
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-01
季跃飞, 赵旭蕾, 张藤, 陆隽鹤. 亚硝酸盐存在下4-氯酚在硫酸根自由基高级氧化工艺中的转化及硝基氯酚的生成[J]. 环境化学, 2020, (4): 852-858. doi: 10.7524/j.issn.0254-6108.2019040103
引用本文: 季跃飞, 赵旭蕾, 张藤, 陆隽鹤. 亚硝酸盐存在下4-氯酚在硫酸根自由基高级氧化工艺中的转化及硝基氯酚的生成[J]. 环境化学, 2020, (4): 852-858. doi: 10.7524/j.issn.0254-6108.2019040103
JI Yuefei, ZHAO Xulei, ZHANG Teng, LU Junhe. Transformation of 4-chlorophenol and formation of chloronitrophenol in a sulfate radical-based advanced oxidation process in the presence of nitrite[J]. Environmental Chemistry, 2020, (4): 852-858. doi: 10.7524/j.issn.0254-6108.2019040103
Citation: JI Yuefei, ZHAO Xulei, ZHANG Teng, LU Junhe. Transformation of 4-chlorophenol and formation of chloronitrophenol in a sulfate radical-based advanced oxidation process in the presence of nitrite[J]. Environmental Chemistry, 2020, (4): 852-858. doi: 10.7524/j.issn.0254-6108.2019040103

亚硝酸盐存在下4-氯酚在硫酸根自由基高级氧化工艺中的转化及硝基氯酚的生成

    通讯作者: 陆隽鹤, E-mail: jhlu@njau.edu.cn
  • 南京农业大学, 资源与环境科学学院, 南京, 210095
基金项目:

国家自然科学基金(21607077)资助.

摘要: 硫酸根自由基(SO4·-)高级氧化工艺(SR-AOPs)被广泛应用于土壤和地下水污染修复,然而其使用过程中生成的有毒有害副产物尚未引起重视.本研究以热活化过硫酸盐(PS)为反应体系,考察亚硝酸盐(NO2-)对4-氯酚(4CP)转化和产物生成的影响.色谱-质谱联用分析表明, SO4·-可介导亚硝态氮掺入4CP分子结构,生成4-氯-2-硝基酚(4C2NP).4C2NP的生成是4CP酚氧自由基(ClPhO·)与二氧化氮自由基(NO2·)相互耦合的结果.在50 μmol·L-1 4CP、 2 mmol·L-1 PS、溶液pH 7.0、加热温度50 ℃、NO2-浓度50—400 μmol·L-1条件下,4C2NP产率介于57.9%—91.8%之间.在中性pH条件下,4C2NP在热活化PS体系中可发生进一步转化.增加NO2-浓度稍微抑制了4CP的转化,却显著提高了4C2NP的产率.Suwannee河富里酸(SRFA)的存在缓减了4CP的转化,但4CP转化生成4C2NP仍然是其消亡的主要途径.结果说明,在NO2-存在下,采用SR-AOPs处理氯酚可生成具有"三致"效应的硝基氯酚,必须引起足够重视.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回