-
铬是一种常见的剧毒重金属,广泛应用于金属电镀、合金制造、皮革鞣制、木材保存和陶瓷制造等工业制造业中[1-2];其中,Cr(VI)和Cr(III)是最常见的2种形态[3]。与Cr(III)相比,Cr(VI)具有更高的溶解度和流动性,使其对细胞毒性和诱变的危害性高出100倍[4-5]。质量浓度≥0.2 mg·mL−1的Cr(VI)和质量浓度≥1.0 mg·mL−1的Cr(III)会损害细胞遗传物质[6]。鉴于Cr(VI)对环境和人体的危害,美国环境保护局将其列为A级人类致癌物[7]。传统的铬处理方法(如吸附/积累、离子交换和化学沉淀等)存在成本高、产生有毒污泥及衍生污染物等缺点[8-9]。相比之下,生物修复技术具有成本低、便于大规模执行、高效率、特异性和环境兼容性强等优点[10–12]。近年来,从铬污染场地分离出的微生物已成为解毒/还原Cr(VI)的研究热点,为实现铬污染环境的生物修复提供了一种安全和生态友好的选择[13-14]。
近年来,本课题组围绕人工湿地-微生物燃料电池(constructed wetland-microbial fuel cell, CW-MFC)中湿地植物李氏禾[15]、不同构型[16]和不同基质碳源[17]下的电化学性能、污染物净化效果和电子传递机制[18]等方面进行了一系列研究。为了探究CW-MFC中特异性耐铬菌或具有铬还原能力菌种,还需进一步探究特异性微生物对Cr(VI)的作用机制。研究人员已分离出多种具有铬生物修复能力的细菌,并对它们与铬的相互作用进行了深入研究[19-20]。据报道,细菌通过多种机制对抗Cr(VI)的毒性,包括络合、离子交换、配位、吸附、螯合和微沉淀、还原和外排等[21-22]。例如,LIAO等[23]研究证明了超氧化物歧化酶和Na+/H+反转运蛋白是phagmitetus BB中解毒Cr(VI)的关键抗氧化系统。GANG等[24]研究表明,在希瓦氏菌MR-1(Shewanella oneidensis MR-1)中,与鞭毛组装、核糖体、运输、硫代谢和能量代谢相关的蛋白质参与了长期对铬的适应。此外,嗜酸窄养单胞菌(Microbacterium paraoxydans)和纤维素微生物(Cellulosimicrobium sp.)利用铬还原酶成功修复Cr(VI)[25-26]。细菌还原Cr(VI)具有复杂的反应机制,尽管Cr(VI)解毒的一般机制已被广泛研究,但对于CW-MFC系统中特异性功能微生物对铬的解毒机制所具有的复杂网络仍需进一步探究。
本研究拟对从李氏禾CW-MFC反应器中筛选出的铬还原菌进行形态学和分子生物学鉴定,并拟研究其对Cr(VI)还原特性及机制;旨在丰富修复铬污染的微生物菌种资源,同时揭示在李氏禾CW-MFC中微生物还原 Cr(VI)过程中的生物学过程。
一株新型Kerstersia gyiorum 菌株CY-2对 Cr(VI) 的还原性能
Reduction properties of Cr(VI) by a novel Kerstersia gyiorum strain CY-2
-
摘要: 为探究李氏禾人工湿地-微生物燃料电池中铬还原菌与Cr(Ⅵ)的相互作用关系,从中筛选一株具有Cr(VI)还原能力的菌株CY-2,并对该菌还原Cr(VI)的特性和机制进行了探究。通过16S rRNA基因序列鉴定,该菌CY-2为Kerstersia gyiorum (OQ773627),其对Cr(VI)的最低抑制浓度为300 mg·L−1;在较宽的pH(4.0~9.0)、温度(27~52 ℃)和接种量(1%~20%)内还原Cr(VI);并在pH=6.0、37 ℃和10%接种量下,该菌在36 h内对50 mg·L−1 Cr(VI)的还原率为100%,对100、150、200和250 mg·L−1 的Cr(VI)在120 h内的还原率分别为62%、42%、25%和16%。此外,菌株CY-2对Mg2+、Mn2+、Cd2+、Cu2+、Co2+、Ni2+和Zn2+具有高耐受性,对呋喃唑酮、利福平和甲硝唑抗生素表现出耐药性,而对其他抗生素表现出敏感性。SEM-EDX和FTIR表征结果表明,菌株CY-2不对铬进行生物吸附;铬的存在导致了细菌细胞表面官能团的变化,并使含硫酸盐分子减少,从而该菌可能通过还原、生物累积和外排等机制有效还原铬。以上结果表明所筛选出的菌株CY-2在铬污染场地的有效生物修复中具有潜在的应用价值。
-
关键词:
- 铬还原 /
- Kerstersia gyiorum /
- 生物修复 /
- 还原机制
Abstract: To investigate the interaction of chromium-reducing bacteria and Cr(VI) in the Leersia hexandra Swartz constructed wetlands-microbial fuel cells, we screened a strain, CY-2, with Cr(VI)-reducing ability and explored its characteristics and mechanism of Cr(VI) reduction. Based on 16S rRNA gene sequence analysis, we identified strain CY-2 as Kerstersia gyiorum (OQ773627), which had a minimum Cr(VI) inhibitory concentration of 300 mg·L−1. The strain CY-2 was capable of reducing Cr(VI) over a broad range of pH(4.0~9.0), temperature (27~52 ℃), and inoculum size (1%~20%). Under the conditions of pH=6.0, 37 ℃, and 10% inoculum, the strain exhibited a complete reduction rate of 100% toward 50 mg·L−1 Cr(VI) within 36 h, and the reduction rates of 62%, 42%, 25%, and 16% toward 100, 150, 200, and 250 mg·L−1 of Cr(VI), respectively, within 120 h. Additionally, strain CY-2 had a high tolerance to Mg2+, Mn2+, Cd2+, Cu2+, Co2+, Ni2+, and Zn2+, and displayed the resistance to the antibiotics furazolidone, rifampicin, and metronidazole, while was sensitive to other antibiotics. The SEM-EDX and FTIR characterization results indicated that the strain CY-2 did not perform bioremoval of chromium. However, the presence of chromium led to changes in the functional groups on the bacterial cell surface and reduced the amount of sulfate molecules. It is possible that the strain may effectively reduce chromium through mechanisms such as reduction, bioaccumulation, and efflux. These results suggest that the screened strain CY-2 has a potential application value in the effective bioremediation of chromium-polluted sites.-
Key words:
- chromium-reducing /
- Kerstersia gyiorum /
- bioremediation /
- reduction mechanisms
-
表 1 菌株CY-2的耐药性分析
Table 1. Drug resistance analysis of strain CY-2
抗生素 药片含量/ug 抑菌环直径/mm 结果 克拉霉素(CLR) 10 22.48 S 阿莫西林(AML) 15 35.60 S 甲硝锉(MTZ) 5 0.00 R 四环素(TE) 30 22.02 S 利福平(RD) 5 7.80 R 左氧氟沙星(LEV) 5 24.12 S 庆大霉素(CN) 10 21.36 S 呋喃唑酮(FR) 100 13.26 R 注:“R”表示耐药,“S”表示敏感。 -
[1] ELAHI A, AJAZ M, REHMAN A, et al. Isolation, characterization, and multiple heavy metal-resistant and hexavalent chromium-reducing Microbacterium testaceum B-HS2 from tannery effluent[J]. Journal of King Saud University-Science, 2019, 31(4): 1437-1444. doi: 10.1016/j.jksus.2019.02.007 [2] PRADHAN D, SUKLA L B, MISHRA B B, et al. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp.[J]. Journal of Cleaner Production, 2019, 209: 617-629. doi: 10.1016/j.jclepro.2018.10.288 [3] LIANG J, HUANG X, YAN J, et al. A review of the formation of Cr (VI) via Cr (III) oxidation in soils and groundwater[J]. Science of the Total Environment, 2021, 774: 145762. doi: 10.1016/j.scitotenv.2021.145762 [4] JAISHANKAR M, TSETEN T, ANBALAGAN N, et al. Toxicity, mechanism and health effects of some heavy metals[J]. Interdisciplinary Toxicology, 2014, 7(2): 60-72. doi: 10.2478/intox-2014-0009 [5] LACALLE R G, APARICIO J D, ARTETXE U, et al. Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation[J]. Heliyon, 2020, 6(8): e04550. doi: 10.1016/j.heliyon.2020.e04550 [6] NOVOTNIK B, ŠČANČAR J, MILAČIČ R, et al. Cytotoxic and genotoxic potential of Cr (VI) , Cr (III) -nitrate and Cr (III) -EDTA complex in human hepatoma (HepG2) cells[J]. Chemosphere, 2016, 154: 124-131. doi: 10.1016/j.chemosphere.2016.03.118 [7] MAO L, GAO B, DENG N, et al. Oxidation behavior of Cr (III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides[J]. Chemosphere, 2016, 145: 1-9. doi: 10.1016/j.chemosphere.2015.11.053 [8] HE X, QIU X, CHEN J. Preparation of Fe (II) –Al layered double hydroxides: Application to the adsorption/reduction of chromium[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516: 362-374. [9] STOLLER M, SACCO O, VILARDI G, et al. Technical-economic evaluation on chromium recovery from tannery wastewater streams by means of membrane processes[J]. Desalination and Water Treatment, 2018, 127: 57-63. doi: 10.5004/dwt.2018.22533 [10] BANERJEE S, MISRA A, CHAUDHURY S, et al. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential[J]. Journal of Hazardous Materials, 2019, 367: 215-223. doi: 10.1016/j.jhazmat.2018.12.038 [11] ELAHI A, REHMAN A. Comparative behavior of two gram positive Cr6+ resistant bacterial strains Bacillus aerius S1 and Brevibacterium iodinum S2 under hexavalent chromium stress[J]. Biotechnology Reports, 2019, 21: e00307. doi: 10.1016/j.btre.2019.e00307 [12] HUANG X N, MIN D, LIU D F, et al. Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila[J]. Environment International, 2019, 129: 86-94. doi: 10.1016/j.envint.2019.05.016 [13] ZENG Q, HU Y, YANG Y, et al. Cell envelop is the key site for Cr (Ⅵ) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr (Ⅵ) reducing bacterium[J]. Journal of Hazardous Materials, 2019, 368: 149-155. doi: 10.1016/j.jhazmat.2019.01.031 [14] PAL A, DUTTA S, PAUL A K. Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil[J]. Current Microbiology, 2005, 51(5): 327-330. doi: 10.1007/s00284-005-0048-4 [15] ZHANG X H, LIU J, HUANG H T, et al. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz[J]. Chemosphere, 2007, 67(6): 1138-1143. doi: 10.1016/j.chemosphere.2006.11.014 [16] 杨佩汶, 林毅, 林华, 等. 不同构型人工湿地-微生物燃料电池对废水中对氯苯酚的净化效果及产电性能的影响[J]. 环境工程学报, 2023, 17(2): 507-516. doi: 10.12030/j.cjee.202210035 [17] 王义安, 张学洪, 郑君健, 等. 不同基质碳源下人工湿地微生物燃料电池的电化学性能及微生物群落结构[J]. 环境工程学报, 2021, 15(11): 3696-3706. doi: 10.12030/j.cjee.202108060 [18] WANG Y, ZHANG X, LIN Y, et al. The electron transport mechanism of downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell when used to treat Cr (VI) and p-chlorophenol[J]. Environmental Science and Pollution Research, 2022, 30(13): 37929-37945. doi: 10.1007/s11356-022-24872-y [19] SATHVIKA T, MANASI, RAJESH V, et al. Adsorption of chromium supported with various column modelling studies through the synergistic influence of Aspergillus and cellulose[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3193-3204. doi: 10.1016/j.jece.2016.06.027 [20] KARTHIK C, RAMKUMAR V S, PUGAZHENDHI A, et al. Biosorption and biotransformation of Cr (VI) by novel Cellulosimicrobium funkei strain AR6[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 282-290. doi: 10.1016/j.jtice.2016.11.006 [21] BHARAGAVA R N, MISHRA S. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries[J]. Ecotoxicology and Environmental Safety, 2018, 147: 102-109. doi: 10.1016/j.ecoenv.2017.08.040 [22] KARTHIK, C, BARATHI, S, PUGAZHENDHI, A, et al. Evaluation of Cr (VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium[J]. Journal of Hazardous Materials, 2017, 333: 42-53. doi: 10.1016/j.jhazmat.2017.03.037 [23] LIAO Q, TANG J, WANG H, et al. Dynamic proteome responses to sequential reduction of Cr (VI) and adsorption of Pb (II) by Pannonibacter phragmitetus BB[J]. Journal of Hazardous Materials, 2020, 386: 121988. doi: 10.1016/j.jhazmat.2019.121988 [24] GANG H, XIAO C, XIAO Y, et al. Proteomic analysis of the reduction and resistance mechanisms of Shewanella oneidensis MR-1 under long-term hexavalent chromium stress[J]. Environment International, 2019, 127: 94-102. doi: 10.1016/j.envint.2019.03.016 [25] LI L, SHANG X, SUN X, et al. Bioremediation potential of hexavalent chromium by a novel bacterium Stenotrophomonas acidaminiphila 4-1[J]. Environmental Technology & Innovation, 2021, 22: 101409. [26] MISHRA S, CHEN S, SARATALE G D, et al. Reduction of hexavalent chromium by Microbacterium paraoxydans isolated from tannery wastewater and characterization of its reduced products[J]. Journal of Water Process Engineering, 2021, 39: 101748. doi: 10.1016/j.jwpe.2020.101748 [27] VERMA T, MAURYA A. Isolation of potential bacteria from tannery effluent capable to simultaneously tolerate hexavalent chromium and pentachlorophenol and its possible use in effluent bioremediation[J]. The International Journal of Engineering and Science, 2003, 2-9: 64-69. [28] YAN X, LIU X, ZHANG M, et al. Lab-scale evaluation of the microbial bioremediation of Cr (VI) : contributions of biosorption, bioreduction, and biomineralization[J]. Environmental Science and Pollution Research, 2021, 28(18): 22359-22371. doi: 10.1007/s11356-020-11852-3 [29] NARDE G K, KAPLEY A, PUROHIT H J. Isolation and Characterization of Citrobacter Strain HPC255 for Broad-Range Substrate Specificity for Chlorophenols[J]. Current Microbiology, 2004, 48(6): 419-423. [30] MUÑOZ A J, RUIZ E, ABRIOUEL H, et al. Heavy metal tolerance of microorganisms isolated from wastewaters: Identification and evaluation of its potential for biosorption[J]. Chemical Engineering Journal, 2012, 210: 325-332. doi: 10.1016/j.cej.2012.09.007 [31] ILIAS M, RAFIQULLAH I M, DEBNATH B C, et al. Isolation and Characterization of Chromium (VI) -Reducing Bacteria from Tannery Effluents[J]. Indian Journal of Microbiology, 2011, 51(1): 76-81. doi: 10.1007/s12088-011-0095-4 [32] CUI X, WANG Y, LIU J, et al. Bacillus dabaoshanensis sp. nov. , a Cr (VI) -tolerant bacterium isolated from heavy-metal-contaminated soil[J]. Archives of Microbiology, 2015, 197 (4) : 513-520. [33] SANJAY M S, SUDARSANAM D, RAJ G A, et al. Isolation and identification of chromium reducing bacteria from tannery effluent[J]. Journal of King Saud University-Science, 2020, 32(1): 265-271. doi: 10.1016/j.jksus.2018.05.001 [34] NANDA M, KUMAR V, SHARMA D K. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water[J]. Aquatic Toxicology, 2019, 212: 1-10. doi: 10.1016/j.aquatox.2019.04.011 [35] CHAI L, DING C, LI J, et al. Multi-omics response of Pannonibacter phragmitetus BB to hexavalent chromium[J]. Environmental Pollution, 2019, 249: 63-73. doi: 10.1016/j.envpol.2019.03.005 [36] BARAN I, DÜZGÜN A P, MUMCUOĞLU İ, et al. Chronic lower extremity wound infection due to Kerstersia gyiorum in a patient with Buerger’s disease: a case report[J]. BMC Infectious Diseases, 2017, 17(1): 608. doi: 10.1186/s12879-017-2711-3 [37] TEKERLEKOPOULOU A G, TSIFLIKIOTOU M, AKRITIDOU L, et al. Modelling of biological Cr (VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems[J]. Water Research, 2013, 47(2): 623-636. doi: 10.1016/j.watres.2012.10.034 [38] MURUGAVELH S, MOHANTY K. Isolation, identification and characterization of Cr (VI) reducing Bacillus cereus from chromium contaminated soil[J]. Chemical Engineering Journal, 2013, 230: 1-9. doi: 10.1016/j.cej.2013.06.049 [39] FOCARDI S, PEPI M, LANDI G, et al. Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04[J]. International Biodeterioration & Biodegradation, 2012, 66(1): 63-70. [40] MURUGAVELH S, MOHANTY K. Bioreduction of hexavalent chromium by free cells and cell free extracts of Halomonas sp.[J]. Chemical Engineering Journal, 2012, 203: 415-422. doi: 10.1016/j.cej.2012.07.069 [41] ISHII S, SUZUKI S, YAMANAKA Y, et al. Population dynamics of electrogenic microbial communities in microbial fuel cells started with three different inoculum sources[J]. Bioelectrochemistry, 2017, 117: 74-82. doi: 10.1016/j.bioelechem.2017.06.003 [42] WANG X, ZHANG Y, SUN X, et al. Efficient removal of hexavalent chromium from water by Bacillus sp. Y2-7 with production of extracellular polymeric substances[J]. Environmental Technology, 2023. DOI: 10.1080/09593330.2023.2185817. [43] SURESH G, RAVICHANDRAN N, RAMESH B, et al. Isolation and characterization of chromium-tolerant bacteria from chromium-containing waste water[J]. Bioremediation, Biodiversity and Bioavailability, 2011, 5(1): 22-27. [44] LIU Y G, XU W H, ZENG G M, et al. Cr (VI) reduction by Bacillus sp. isolated from chromium landfill[J]. Process Biochemistry, 2006, 41(9): 1981-1986. doi: 10.1016/j.procbio.2006.04.020 [45] SHEKHAR S, SUNDARAMANICKAM A, VIJAYANSIVA G. Detoxification hexavalent chromium by potential chromate reducing bacteria isolated from turnery effluent[J]. American Journal of Research Communication, 2014, 2(2): 205-216. [46] BANERJEE S, JOSHI S R, MANDAL T, HALDER G N. Insight into Cr6+ reduction efficiency of Rhodococcus erythropolis isolated from coalmine waste water[J]. Chemosphere, 2017, 67: 269-281. [47] LI M, HE Z, HU Y, et al. Both cell envelope and cytoplasm were the locations for chromium (VI) reduction by Bacillus sp. M6[J]. Bioresource Technology, 2019, 273: 130-135. doi: 10.1016/j.biortech.2018.11.006 [48] SANDANA MALA J G, SUJATHA D, ROSE C. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation[J]. Microbiological Research, 2015, 170: 235-241. doi: 10.1016/j.micres.2014.06.001 [49] HORA A, SHETTY V K. Partial purification and characterization of chromate reductase of a novel Ochrobactrum sp. strain Cr-B4[J]. Preparative Biochemistry and Biotechnology, 2015, 45(8): 769-784. doi: 10.1080/10826068.2014.952385 [50] XU L, LUO M, JIANG C, et al. In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions[J]. Applied Biochemistry and Biotechnology, 2012, 166(4): 933-941. doi: 10.1007/s12010-011-9481-y [51] JAIN P K, RAMACHANDRAN S, SHUKLA V, et al. Characterization of metal and antibiotic resistance in a bacterial population isolated from a copper mining industry[J]. International Journal of Integrative Biology, 2009, 6: 57-61. [52] VERMA T, GARG S K, RAMTEKE P W. Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent[J]. Journal of Applied Microbiology, 2009, 107(5): 1425-1432. doi: 10.1111/j.1365-2672.2009.04326.x [53] CHEN Z, HUANG Z, CHENG Y, et al. Cr (VI) uptake mechanism of Bacillus cereus[J]. Chemosphere, 2012, 87(3): 211-216. doi: 10.1016/j.chemosphere.2011.12.050 [54] HE M, LI X, LIU H, et al. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1[J]. Journal of Hazardous Materials, 2011, 185(2/3): 682-688. [55] WANG X S, LI Y, HUANG L P, et al. Adsorption of Cr (VI) from aqueous solutions by Staphylococcus aureus biomass[J]. Clean-Soil, Air, Water, 2010, 38(5/6): 500-505. [56] SINGH R, KUMAR A, KIRROLIA A, et al. Removal of sulphate, COD and Cr (VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study[J]. Bioresource Technology, 2011, 102(2): 677-682. doi: 10.1016/j.biortech.2010.08.041 [57] MAJUMDER R, SHEIKH L, NASKAR A, et al. Depletion of Cr (VI) from aqueous solution by heat dried biomass of a newly isolated fungus Arthrinium malaysianum: A mechanistic approach[J]. Scientific Reports, 2017, 7(1): 11254. doi: 10.1038/s41598-017-10160-0 [58] BROWN S D, THOMPSON M R, VERBERKMOES N C, et al. Molecular dynamics of the Shewanella oneidensis response to chromate stress[J]. Molecular & Cellular Proteomics, 2006, 5(6): 1054-1071.