-
溴系阻燃剂六溴环十二烷(HBCDs)具有优良的阻燃性能,近30年被广泛用于建筑保温材料的阻燃. 随着HBCDs在环境和生物体内不断被发现,甚至在偏远的北极地区生物体内也有检出[1-2],HBCDs的环境污染问题受到高度关注,2013年被正式列入《关于持久性有机污染物(persistent organic pollutants, POPs)的斯德哥尔摩公约》,成为POPs管控物质. HBCDs在全球禁用后,用它做阻燃剂的建筑材料在未来几十年还会不断释放HBCDs,对环境和人体健康的影响仍将持续. HBCDs是一种人工合成的化学品,非自然产生,环境中HBCDs的残留来源于工业生产和使用[3-4]. 在远离污染源的南北极和青藏高原等地区发现HBCDs[5-7],揭示了HBCDs可能在较长的周期内,从中低纬度的污染区通过长距离大气传输(long-range atmospheric transport, LRAT)到达偏远地区,证实了HBCDs具有持久性和长距离传输特性 [8-10]. 然而,仅有少数几篇文献报导了格陵兰(Greenland)[11]、斯瓦尔巴特(Svalbard)[12]等北极地区和青藏高原[13]大气中HBCDs的浓度水平,南极大气的HBCDs污染状况还不清楚.
南极洲被太平洋、印度洋和大西洋包围,远离其他大陆,没有长住居民,仅有少量科考人员临时居住. 南极环境中POPs的残留源于当地污染源的可能性较小,长距离大气传输可能是唯一来源[10]. 南极大气中POPs的研究旨在为POPs长距离大气传输提供直接证据,具有重要意义. 主动大气采样器(如大流量采样器)和PUF被动大气采样器是大气环境监测的重要工具. 主动大气采样的采样速率相对稳定,能获得较准确的采样体积,是大气中HBCDs采集分析的经典方法[10-11]. 然而主动大气采样器通常需要电力,在极地或偏远地区很难大范围布点采样. 以PUF为吸附介质的被动大气采样器体积小、价格低,无需电力,更适于野外大范围采样,对采样速率进行校正后[14],可以用于大气中HBCDs等POPs的采集和分析[4, 12].
本研究在我国第26次南极科学考察期间,采用主动大气采样和被动大气采样两种方法,研究了南极菲尔德斯半岛和阿德利岛大气中HBCDs的污染状况. 对比大流量采样器和PUF被动采样器的检测结果,分析了在南极低温、强风、多风的极端气候条件下,使用PUF被动采样器进行HBCDs研究的可行性. 现在野外条件下使用主动和被动大气采样法对照分析南极大气中HBCDs的研究还鲜见文献报导.
南极菲尔德斯半岛(Fildes Peninsula)和阿德利岛(Ardley Island)大气中六溴环十二烷(HBCDs)的分析
Analysis of Hexabromocyclododecanes (HBCDs) in the atmosphere in Fildes Peninsula and Ardley Island, Antarctica
-
摘要: 在2009—2010年南半球夏季,用大流量采样器(high-volume air sampler,HVAS)和聚胺酯泡沫(polyurethane foam,PUF)被动采样器采集了南极菲尔德斯半岛和阿德利岛6个点的大气样品,分析了HBCDs的浓度水平、异构体组成、气相-颗粒相分配和空间分布趋势. 主动和被动采集大气样品中ΣHBCDs浓度(α-HBCD、β-HBCD、γ-HBCD的浓度)范围分别为n.d.(未检出)—2.73 pg·m−3和0.41—3.39 pg·m−3,与北极和偏远地区浓度水平一致,远低于城市和工业区的污染水平. HBCDs在主动采集的颗粒相和气相中的平均比例分别为67%和33%,颗粒相以α-HBCD(57%)为主,气相以γ-HBCD(53%)为主;被动采集的PUF样品中γ-HBCD(64%)占优势. 经过主动采样和被动采样的对比研究,对采样速率进行校正后,PUF被动采样器可以用于南极大气样品的采集. 南极大气中HBCDs的检出,表明HBCDs具有持久性和潜在的长距离大气传输能力;南极长城站附近大气中HBCDs浓度水平略高,反映了有限的人类活动对南极环境产生了影响.Abstract: Air samples were collected in the austral summer of 2009—2010 at six sites in Fildes Peninsula and Ardley Island, Antarctica to investigate the levels, isomer profiles, gas-particle distribution of HBCDs using high-volume air samplers (HVAS) and polyurethane foam (PUF)-disk based passive air samplers. The concentrations of ΣHBCDs (sum of α-, β- and γ-HBCD) in air samples from active air sampling and passive air sampling were in the ranges of n.d. (not detected)—2.73 pg·m−3 and 0.41—3.39 pg·m−3 respectively, which were comparable with those from the Arctic regions and remote sites, and much lower than those from urban areas and industrial districts. For active air sampling, the average percentage of HBCDs were 67% and 33% in the particle-phase and gas-phase, respectively, and α-HBCD (57%) was the dominant isomer in the particle-phase, whereas γ-HBCD (53%) dominated in the gas-phase. As for passive air sampling, the PUF samples were dominated by γ-HBCD (64%). Comparative study of active air sampling and passive air sampling demonstrates the feasibility of using PUF passive samplers in Antarctica after the calibration of sampling rates. The presence of HBCDs in Antarctica suggests that HBCDs are persistent and have potential for long-range atmospheric transport, and the slightly higher level of HBCDs at the Great Wall Station site also reflects the effects of limited anthropogenic activities on the Antarctic environment.
-
Key words:
- HBCDs /
- isomer /
- Antarctica /
- active air sampling /
- passive air sampling.
-
表 1 主动大气采样和被动大气采样的详细信息
Table 1. The details of active air sampling and passive air sampling
采样方法
Sampling methods采样点
Sampling sites纬度
Latitude经度
Longitude采样时间
Sampling time样品编号
Sample No.主动大气采样
Active air samplingG1(长城站) 62°13′07″S 58°57′45″W 2009.12.11—18 GP11, GP12 2009.12.18—26 GP21, GP22 2009.12.27—2010.1.2 GP31, GP32 2010.01.08—17 GP41, GP42 2010.01.17—22 GP51, GP52 2010.01.24—30 GP61, GP62 2010.01.31—2.5 GP71, GP72 被动大气采样
Passive air samplingG2(地磁台) 62°13′12″S 58°57′48″W 2009.12.8—2010.2.7 G-2 G3(阿德利岛) 62°12′52″S 58°55′52″W 2009.12.15—2010.2.7 G-3 G4(横断风谷) 62°12′22″S 58°59′59″W 2009.12.27—2010.2.6 G-4 G5(半边山) 62°12′19″S 58°57′17″W 2009.12.30—2010.2.7 G-5 G6(龟背山) 62°13′48″S 58°55′59″W 2009.12.24—2010.2.6 G-6 注:主动大气采样的样品编号中,GP11指气相和颗粒相一组样品,第1个数字表示采样批次,第2个数字表示平行样序号,依此类推. Note: The sample No. GP11 for active air sampling means a pair of samples including gas- and particle-phase, and the first figure means the number of sampling campaign, and the second one means the number of parallel samples, and so on. 表 2 主动采集的大气样品的分析结果
Table 2. The results of analysis for the air samples from active air sampling
样品编号
Sample No.采样体积/m3
Sample volume总悬浮颗粒物/(μg·m−3)
TSPα-HBCD/(pg·m−3) β-HBCD/(pg·m−3) γ-HBCD/(pg·m−3) ƩHBCDs/(pg·m−3) GP11 1924.3 32.3 0.15 0.097 0.35 0.60 GP12 1918.1 15.5 n.d. n.d. 0.63 0.63 GP21 1916.9 11.9 n.d. n.d. n.d. n.d. GP22 1915.6 25.0 n.d. n.d. 0.16 0.16 GP31 1726.1 2.3 1.98 0.52 0.22 2.73 GP32 1724.8 3.5 1.51 0.48 0.21 2.20 GP41 1846.4 12.8 0.76 0.29 0.70 1.75 GP42 1843.1 22.0 0.63 0.22 0.28 1.13 GP51 1524.9 8.5 0.85 0.099 0.34 1.29 GP52 1522.9 3.3 n.d. n.d. 0.22 0.22 GP61 1863.8 22.3 n.d. 0.14 0.50 0.64 GP62 1858.0 21.2 0.22 0.065 0.34 0.62 GP71 1028.3 10.3 n.d. n.d. 0.23 0.23 GP72 1926.5 26.6 0.49 0.13 0.25 0.87 平均值±标准偏差Mean ± SD 15.5 ± 9.5 0.47 ± 0.63 0.15 ± 0.17 0.32 ± 0.19 0.93 ± 0.81 注:TSP (total suspended particulate matter)为单位体积的颗粒相质量;α-HBCD、β-HBCD、γ-HBCD、ƩHBCDs浓度为气相和颗粒相浓度和;n.d.,未检出. Note: TSP (total suspended particulate matter) was the mass of particle-phase per unit volume; The concentrations of α-HBCD、β-HBCD、γ-HBCD、ƩHBCDs were the sum of gas- and particle-phase; n.d., not detected. 表 3 被动采集的大气样品的分析结果
Table 3. The results of analysis for the air samples from passive air sampling
样品编号
Sample No.α-HBCD/(pg·m−3) β-HBCD/(pg·m−3) γ-HBCD/(pg·m−3) ƩHBCDs/(pg·m−3) G-2 0.45 0.76 2.18 3.39 G-3 n.d. n.d. 0.41 0.41 G-4 n.d. 0.24 0.69 0.93 G-5 n.d. n.d. 0.58 0.58 G-6 0.53 0.4 0.64 1.57 平均值±标准偏差
Mean ± SD0.20 ± 0.27 0.28 ± 0.32 0.84 ± 0.77 1.32 ± 1.26 注: n.d.,未检出. n.d., not detected -
[1] MUIR D C G, BACKUS S, DEROCHER A E, et al. Brominated flame retardants in polar bears ( Ursus maritimus) from Alaska, the Canadian Arctic, East Greenland, and Svalbard[J]. Environmental Science & Technology, 2006, 40(2): 449-455. [2] VORKAMP K, THOMSEN M, FALK K, et al. Temporal development of brominated flame retardants in peregrine Falcon ( Falco peregrinus) eggs from South Greenland (1986-2003)[J]. Environmental Science & Technology, 2005, 39(21): 8199-8206. [3] REMBERGER M, STERNBECK J, PALM A, et al. The environmental occurrence of hexabromocyclododecane in Sweden[J]. Chemosphere, 2004, 54(1): 9-21. doi: 10.1016/S0045-6535(03)00758-6 [4] ABDALLAH M A E, HARRAD S, COVACI A. Hexabromocyclododecanes and tetrabromobisphenol-A in indoor air and dust in Birmingham, UK: Implications for human exposure[J]. Environmental Science & Technology, 2008, 42(18): 6855-6861. [5] MILJETEIG C, STRØM H, GAVRILO M V, et al. High levels of contaminants in Ivory gull Pagophila eburnea eggs from the Russian and Norwegian Arctic[J]. Environmental Science & Technology, 2009, 43(14): 5521-5528. [6] ZHU N, FU J, GAO Y, et al. Hexabromocyclododecane in alpine fish from the Tibetan Plateau, China [J]. Environmental Pollution, 2013, 181, 7-13. doi: 10.1016/j.envpol.2013.05.050 [7] KIM J T, SON M H, KANG J H, et al. Occurrence of legacy and new persistent organic pollutants in avian tissues from King George Island, Antarctica[J]. Environmental Science & Technology, 2015, 49(22): 13628-13638. [8] WANG P, LI Y M, ZHANG Q H, et al. Three-year monitoring of atmospheric PCBs and PBDEs at the Chinese Great Wall Station, West Antarctica: Levels, chiral signature, environmental behaviors and source implication[J]. Atmospheric Environment, 2017, 150: 407-416. doi: 10.1016/j.atmosenv.2016.11.036 [9] HAO Y F, LI Y M, HAN X, et al. Air monitoring of polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides in West Antarctica during 2011-2017: Concentrations, temporal trends and potential sources[J]. Environmental Pollution, 2019, 249: 381-389. doi: 10.1016/j.envpol.2019.03.039 [10] HUNG H, KATSOYIANNIS A A, BRORSTRÖM-LUNDÉN E, et al. Temporal trends of Persistent Organic Pollutants (POPs) in arctic air: 20 years of monitoring under the Arctic Monitoring and Assessment Programme (AMAP)[J]. Environmental Pollution, 2016, 217: 52-61. doi: 10.1016/j.envpol.2016.01.079 [11] VORKAMP K, BOSSI R, RIGÉT F F, et al. Novel brominated flame retardants and dechlorane plus in Greenland air and biota[J]. Environmental Pollution, 2015, 196: 284-291. doi: 10.1016/j.envpol.2014.10.007 [12] LEE S C, SVERKO E, HARNER T, et al. Retrospective analysis of “new” flame retardants in the global atmosphere under the GAPS Network[J]. Environmental Pollution, 2016, 217: 62-69. doi: 10.1016/j.envpol.2016.01.080 [13] ZHU N L, SCHRAMM K W, WANG T, et al. Environmental fate and behavior of persistent organic pollutants in Shergyla Mountain, southeast of the Tibetan Plateau of China[J]. Environmental Pollution, 2014, 191: 166-174. doi: 10.1016/j.envpol.2014.04.031 [14] TUDURI L, HARNER T, HUNG H. Polyurethane foam (PUF) disks passive air samplers: Wind effect on sampling rates[J]. Environmental Pollution, 2006, 144(2): 377-383. doi: 10.1016/j.envpol.2005.12.047 [15] LI H H, ZHANG Q H, WANG P, et al. Levels and distribution of hexabromocyclododecane (HBCD) in environmental samples near manufacturing facilities in Laizhou Bay area, East China[J]. Journal of Environmental Monitoring, 2012, 14(10): 2591-2597. doi: 10.1039/c2em30231d [16] HOH E, HITES R A. Brominated flame retardants in the atmosphere of the East-Central United States[J]. Environmental Science & Technology, 2005, 39(20): 7794-7802. [17] DRAGE D S, NEWTON S, de WIT C A, et al. Concentrations of legacy and emerging flame retardants in air and soil on a transect in the UK West Midlands[J]. Chemosphere, 2016, 148: 195-203. doi: 10.1016/j.chemosphere.2016.01.034 [18] ABDALLAH M A E, HARRAD S. Modification and calibration of a passive air sampler for monitoring vapor and particulate phase brominated flame retardants in indoor air: Application to car interiors[J]. Environmental Science & Technology, 2010, 44(8): 3059-3065. [19] QI H, LI W L, LIU L Y, et al. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning[J]. Science of the Total Environment, 2014, 491/492: 60-66. doi: 10.1016/j.scitotenv.2014.03.002 [20] HU J C, JIN J, WANG Y, et al. Levels of polybrominated diphenyl ethers and hexabromocyclododecane in the atmosphere and tree bark from Beijing, China[J]. Chemosphere, 2011, 84(3): 355-360. doi: 10.1016/j.chemosphere.2011.04.002 [21] LI H R, MO L G, YU Z Q, et al. Levels, isomer profiles and chiral signatures of particle-bound hexabromocyclododecanes in ambient air around Shanghai, China[J]. Environmental Pollution, 2012, 165: 140-146. doi: 10.1016/j.envpol.2012.02.015 [22] YU Z Q, CHEN L G, MAI B X, et al. Diastereoisomer- and enantiomer-specific profiles of hexabromocyclododecane in the atmosphere of an urban city in South China[J]. Environmental Science & Technology, 2008, 42(11): 3996-4001. [23] KURT-KARAKUS P B, ALEGRIA H, JANTUNEN L, et al. Polybrominated diphenyl ethers (PBDEs) and alternative flame retardants (NFRs) in indoor and outdoor air and indoor dust from Istanbul-Turkey: Levels and an assessment of human exposure[J]. Atmospheric Pollution Research, 2017, 8(5): 801-815. doi: 10.1016/j.apr.2017.01.010 [24] SHOEIB M, AHRENS L, JANTUNEN L, et al. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada[J]. Atmospheric Environment, 2014, 99: 140-147. doi: 10.1016/j.atmosenv.2014.09.040 [25] ARINAITWE K, MUIR D C G, KIREMIRE B T, et al. Polybrominated diphenyl ethers and alternative flame retardants in air and precipitation samples from the Northern Lake Victoria region, East Africa[J]. Environmental Science & Technology, 2014, 48(3): 1458-1466. [26] MENG X Z, DUAN Y P, YANG C, et al. Occurrence, sources, and inventory of hexabromocyclododecanes (HBCDs) in soils from Chongming Island, the Yangtze River Delta (YRD)[J]. Chemosphere, 2011, 82(5): 725-731. doi: 10.1016/j.chemosphere.2010.10.091 [27] HARRAD S, ABDALLAH M A, ROSE N L, et al. Current-use brominated flame retardants in water, sediment, and fish from English lakes[J]. Environmental Science & Technology, 2009, 43(24): 9077-9083. [28] KAJIWARA N, TAKIGAMI H. Emission behavior of hexabromocyclododecanes and polybrominated diphenyl ethers from flame-retardant-treated textiles[J]. Environmental Science. Processes & Impacts, 2013, 15(10): 1957-1963. [29] TUE N M, TAKAHASHI S, SUZUKI G, et al. Contamination of indoor dust and air by polychlorinated biphenyls and brominated flame retardants and relevance of non-dietary exposure in Vietnamese informal e-waste recycling sites[J]. Environment International, 2013, 51: 160-167. doi: 10.1016/j.envint.2012.11.006