-
微囊藻毒素(microcystins,MCs)是一类由蓝藻产生的环状七肽天然毒素,其中微囊藻毒素-LR(MC-LR)是毒性最强、分布最为广泛的MCs变体之一[1-2]. 夏季富营养化的湖泊容易发生蓝藻暴发从而产生较高浓度的MCs,这会给人体健康和生态环境造成危害. MCs的化学结构稳定,在天然水体中虽然能在光照和微生物的作用下降解,但降解缓慢[3];因此需要采取一些人工手段进行水体治理以去除MCs,减少MCs带来的危害和风险. 常用的MCs去除方法通常应用于水处理厂,如活性炭吸附、混凝沉淀、化学氧化、超滤、生物膜反应器等[3- 4],若在湖泊水体中开展大规模治理,上述方法会有诸多限制. 生物炭由于原料来源广泛、制备方便、成本低廉,有较强的污染物吸附能力,此外还具有固碳减排、改良土壤或底质等多重环境效益,近年来在环境领域受到越来越多的研究和应用[5-6]. 因此,用生物炭来吸附去除水体中MCs是较为可行的方法.
制备生物炭的原料有农林植物废料、畜禽粪便、餐厨垃圾、沼渣污泥等,水生植物残体也是制备生物炭的常见原料[7]. 水生植物是湿地生态系统的重要组成部分,具有分布广、产量大、生长快的特点;但到秋冬季节,水生植物往往会枯萎,残体若不及时处理,会腐烂释放出营养物质造成水体污染[8]. 因此,将水生植物制成生物炭再投放到水体吸附MC-LR,既实现水生植物资源化利用,又能改良水体.
直接热解得到的生物炭的吸附性能通常十分有限,往往不能满足实际工作中去除特定污染物的应用需求[9]. 为了提升其吸附性能,可通过改性来改善其理化性质[10]. 氯化镁由于无毒害、腐蚀性小、成本低,是一种较为理想的改性剂[11]. 将氯化镁用于生物炭改性去除水体中的无机营养盐和重金属有较多的研究,镁改性能在生物炭表面负载含镁矿物,这能增强静电吸引、离子交换、表面络合、化学沉淀从而加强对无机污染物的吸附性能[12-14]. 虽然将镁改性生物炭用于有机污染物的去除研究较少,但Tao等研究认为镁改性可用于提升对可离子化有机污染物的吸附性能[15].
目前,利用水生植物生物炭去除MC-LR的研究较少,而利用镁改性生物炭吸附MC-LR的研究未见相关报道. 本研究在这一方面做新的尝试,利用2种常见的水生植物苦草(Vallisneria natans)和狐尾藻(Myriophyllum verticillatum)制备氯化镁改性生物炭,开展其吸附MC-LR的研究,结合生物炭的表征和吸附特性,探索其改性和吸附机理.
-
材料:苦草和狐尾藻采集自江苏省无锡市太湖贡湖湾湿地公园.
试剂:MC-LR(≥95%)购自Taiwan Algal Science Inc.;氯化镁(AR)购自上海凌峰化学试剂有限公司;微囊藻毒素检测试剂盒购自Beacon Analytical Systems Inc.;其他试剂均为分析纯.
仪器:酶标仪(Tecan Infinite 200 PRO)、全自动比表面及孔隙度分析仪(Micromeritics ASAP 2460)、有机元素分析仪(Elementar vario EL Ⅲ)、傅里叶变换红外光谱仪(Nicolet Nexus 870)、X射线光电子能谱仪(Thermo Fisher Nexsa)、X射线衍射仪(Thermo X'TRA)、马弗炉、pH计、恒温摇床等.
-
先将采集到的苦草和狐尾藻清洗,去除表面泥沙,晒干并60 ℃烘干至恒重,粉碎至小于20目. 将植物碎末填充到坩埚中,加入与植物碎末质量(g)等数值体积(mL)的MgCl2溶液浸渍24 h,分别设置0.5、1.0、2.0、4.0 mol·L−1的MgCl2浸渍浓度. 然后将坩埚置于马弗炉中以3 ℃·min−1升温速率加热至500 ℃,维持3 h热解. 热解完成后冷却至室温,用超纯水清洗、烘干后研磨过筛,取100—200目颗粒并再次清洗烘干,得到粒度较为均一的氯化镁改性生物炭. 用K指代苦草,H指代狐尾藻,按照浸渍浓度分别将镁改性苦草生物炭分别标记为KB-0.5Mg、KB-1.0Mg、KB-2.0Mg、KB-4.0Mg;镁改性狐尾藻生物炭分别标记为HB-0.5Mg、HB-1.0Mg、HB-2.0Mg、HB-4.0Mg.
对应地制备500 ℃热解未改性生物炭KB、HB,方法见本课题组先前的研究[16].
-
全自动比表面积孔隙度分析仪测定77 K温度下生物炭对N2的吸附等温线;有机元素分析仪测定生物炭中C、H、N、O含量(其中O元素用氧模式测定);KCl压片法测定生物炭的傅里叶变换红外光谱(FTIR),波数区间为4000—400 cm−1;X射线光电子能谱仪对生物炭进行XPS全谱扫描(结合能1350—0 eV)和特定元素精细谱的扫描;对生物炭进行X射线衍射(XRD),扫描范围5°—90°,速率10(°)·min−1;采用pH漂移法测定生物炭的零电荷点(pHpzc)[17-19].
-
(1)吸附去除率
为了使体系的pH在吸附过程中维持稳定,以pH 7磷酸缓冲液(使用0.001 mol·L−1 NaH2PO4配制,并用NaOH调节至pH 7)作为背景溶液配制10 μg·L−1的MC-LR溶液. 取2.0 mg生物炭添加到上述50 mL MC-LR溶液中,用螺口玻璃瓶盛装,密封后以180 r·min−1转速25 ℃恒温振荡24 h后取样.
(2)吸附动力学
取4.0 mg生物炭添加到上述100 mL 10 μg·L−1 MC-LR溶液中,密封后以180 r·min−1转速25 ℃恒温振荡,每间隔一段时间进行取样.
(3)吸附等温线
以pH 7磷酸缓冲液为背景溶液配制0—100 μg·L−1不同浓度的MC-LR溶液,取2.0 mg生物炭添加到上述不同初始浓度50 mL MC-LR溶液中,密封后以180 r·min−1转速恒温(分别设置25 ℃和35 ℃)振荡72 h后取样.
(4)pH的影响
配制10 μg·L−1 MC-LR溶液,以0.001 mol·L−1NaH2PO4为背景溶液,并用H2SO4/NaOH调节pH为4、6、8、10. 取2.0 mg生物炭添加到50 mL上述不同pH的MC-LR溶液中,密封后以180 r·min−1转速25 ℃恒温振荡24 h后取样.
(5)溶解性有机质(DOM)的影响
用富里酸(CAS: 479-66-3)、单宁酸(CAS: 1401-55-4)、没食子酸(CAS: 149-91-7)做为模式DOM,探讨不同分子量大小DOM对吸附的影响. 配制10 μg·L−1 MC-LR溶液,以pH 7磷酸缓冲液为背景溶液,分别添加上述DOM使溶液中DOM浓度为2 μmol·L−1. 取2.0 mg生物炭添加到50 mL上述含有不同DOM的MC-LR溶液中,密封后以180 r·min−1转速25 ℃恒温振荡24 h.
上述所有吸附实验均进行平行实验,所有样品取约2 mL用0.45 μm针头滤器过滤,将滤液保存在玻璃小瓶中,测定溶液在吸附前后MC-LR浓度.
-
使用酶联免疫吸附法(ELISA)测定MC-LR,利用Beacon公司生产的ELISA试剂盒进行检测. 若样品浓度较高超过试剂盒量程(2.0 μg·L−1),先对样品进行适当比例稀释,再依据说明书的操作流程进行加样、孵育、洗版、显色,用酶标仪测定450 nm吸光度最终计算MC-LR浓度,检测限为0.1 μg·L−1. 所有样品及平行样品均进行复孔测定.
-
对未改性生物炭KB、HB和镁改性生物炭KB-2.0Mg、HB-2.0Mg进行N2吸附等温线(77 K)的测定,利用BET模型计算生物炭的比表面积SBET,根据等温线P/P0≥0.99处的N2吸附量计算生物炭的总孔孔容Vtot,利用DFT模型计算生物炭的孔径分布. 根据孔径分布计算出微孔(孔径≤2 nm)孔容Vmic和中孔(2 nm<孔径≤50 nm)孔容Vmes. 其中未改性生物炭的部分表征结果引自本课题组先前的研究[16].
从孔径分布图(图1)可以看出,镁改性生物炭在不同孔径下对应的孔容均高于未改性生物炭. 表1 也表明,镁改性生物炭比表面积和孔容明显高于未改性生物炭,且中孔的增加明显,说明氯化镁改性能够促进生物炭孔隙的形成. 研究表明,氯化镁改性能够使生物炭表面产生鳞片状MgO颗粒,该结构有助于提升生物炭的比表面积[20]. 此外,MgCl2在高温下能与H2O反应,形成Mg(OH)2、Mg(OH)Cl、MgO等产物,并释放HCl气体,该过程会改变生物炭的孔隙结构,促进孔容的增加[21-22].
-
生物炭的元素分析结果见表2. 其中C、H、O、N元素含量由元素分析仪测定得到的质量分数,而Mg元素含量由XPS全谱扫描分析得到的原子数占比. 通常,O/C和(N+O)/C可反映生物炭的亲水性和极性,O/C和(N+O)/C的值越大表示亲水性和极性越强;H/C可反映生物炭的芳香性,值越小则芳香性越强[23-24]. 结果显示,氯化镁改性使生物炭的极性和亲水性增加,而芳香性降低. 改性苦草生物炭中Mg元素含量比改性狐尾藻生物炭更高,可见不同植物材料会影响改性过程中Mg元素的负载.
-
FTIR表征结果见图2. 波数3694—3696 cm−1处尖锐的峰是孤立的—OH伸缩振动引起的,这可能来源于Mg(OH)2中的O—H基团[25-26];3356—3377 cm−1处的宽峰是氢键缔和的—OH伸缩振动[25, 27];1695—1727 cm−1处的峰是酮、醛、羧基或内酯基中C=O伸缩振动[28];1576—1580 cm−1处较强的峰是羧基COO的反对称伸缩振动[29], 1399—1417 cm−1处的弱峰是羧基COO的对称伸缩[29];1034—1035 cm−1处的峰可归因于C—O—C对称伸缩振动[28-29],但也可能是蒙脱石、伊利石等无机硅酸盐类矿物的特征峰[30];镁改性生物炭在467—471 cm−1出现新的峰,可归因于MgO或Mg(OH)2中Mg—O键的伸缩振动[31-33]. 上述FTIR结果表明,生物炭以及改性生物炭表面含有羧基、羟基等多种含氧官能团,且氯化镁改性使生物炭表面负载含镁矿物.
XPS表征结果见图3. 图3 (a, b)是XPS全扫图,可以看出未改性生物炭中除了含有C、N、O元素,还存在Si、Al、Ca、Na等矿物盐类元素;氯化镁改性使生物炭的XPS全谱中出现明显的Mg(1s)谱峰,也带入一定量的Cl元素. 将生物炭的C(1s)精细谱用Avantage软件进行分峰拟合,结果见图3 (c, d). 峰值为284.8 eV的峰代表C—C中的C元素;286.1—286.2 eV处代表C—O;287.5—287.6 eV处代表醛或酮的C=O;288.8 eV处代表羧基或酯基的O—C=O[34-35]. 此外,290.0—290.2 eV处是π−π*峰,是芳环中的离域电子跃迁形成的[34, 36]. 这说明生物炭具有富π电子的表面,能与MC-LR分子中含共轭结构的胍基发生π+−π电子供体-受体(π+−π EDA)相互作用而利于吸附[37]. 氯化镁改性使C—C中C元素占总C元素的比例下降,而C—O和O—C=O占比上升,这表明氯化镁改性使生物炭的含氧官能团增加. 图3 (e, f)是Mg(1s)的分峰拟合谱图,可以看出镁改性生物炭的Mg(1s)谱峰明显强于未改性生物炭,且Mg元素主要以Mg(OH)2和MgO的形式存在,1303.3—1303.4 eV的峰代表Mg(OH)2,1304.0—1304.2 eV的峰代表MgO[38-40].
对未改性生物炭KB、HB和镁改性生物炭KB-2.0Mg、HB-2.0Mg进行XRD表征,并通过比对ICDD PDF-2 2004标准谱图进行物相鉴定,结果见图4. 从图4可以看出,镁改性生物炭中含有Mg(OH)2(PDF卡号:44-1482)和MgO(PDF卡号:45-0946)的衍射峰,这说明镁改性生物炭中含有Mg(OH)2和MgO结晶,这也进一步佐证了XPS中的分析结果. 此外,生物炭中还含有CaCO3(PDF卡号:05-0586)和SiO2(PDF卡号:46-1045)等矿物成分.
-
用pH漂移法测定生物炭的零电荷点(pHpzc),其测定原理是将生物炭投加到不同初始pH的Na2SO4电解质溶液中,当溶液的pH<pHpzc时,生物炭会净吸附H+,使溶液pH升高;当溶液的pH>pHpzc时,生物炭会净吸附OH−,使溶液pH下降;而pH=pHpzc时,则溶液pH不变[41]. 因此,以溶液初始pH(Initial pH)为横坐标、混合24 h之后的pH(Final pH)为纵坐标作图,用曲线连接,曲线上Initial pH = Final pH的点即pHpzc[17-18],结果见图5. 可以看出,未改性生物炭和镁改性生物炭的pHpzc>7,这说明在中性水体中生物炭表面会净吸附H+而带正电[42],而MC-LR分子在中性条件下带负电[43],因此生物炭与MC-LR分子之间存在静电吸引作用. 镁改性生物炭的pHpzc高于未改性生物炭,且苦草和狐尾藻制得的生物炭在镁改性后pHpzc值基本相同. 研究表明Mg(OH)2和MgO有较高的pHpzc,分别在10.8—12和9.8—12之间[44],因此改性负载MgO和Mg(OH)2能提高生物炭的pHpzc.
-
比较未改性生物炭和不同镁浸渍浓度制备的镁改性生物炭对MC-LR的吸附去除性能,投炭量为2.0 mg/50 mL,MC-LR去除率见图6. 从图6可以看出,MgCl2浸渍浓度为2.0 mol·L−1制备得到的镁改性生物炭对MC-LR的吸附性能最佳;与未改性生物炭相比,镁改性生物炭对MC-LR吸附性能有明显的提高. 研究表明,MC-LR的分子尺寸为1.9 nm×1.5 nm×1.1 nm[45],由于体积排阻效应MC-LR分子无法进入微孔,中孔填充是生物炭吸附MC-LR的重要机制[34, 37]. 生物炭的表征结果已表明,镁改性使生物炭的比表面积增大,尤其中孔孔容增加明显,从而提升了生物炭的吸附性能;此外,生物炭表面的含氧官能团能与MC-LR中的氨基、羧基形成氢键[46],而镁改性能使生物炭的含氧官能团增加,有利于对MC-LR的吸附. 镁改性生物炭的pHpzc要高于未改性生物炭(图5),表明镁改性生物炭在溶液中能吸附更多H+而带有更多的正电荷[41],能与带负电的MC-LR分子产生更强的静电吸引力,有利于吸附.
-
研究未改性生物炭KB、HB和镁改性生物炭KB-2.0 Mg、HB-2.0 Mg对MC-LR的吸附动力学. 用式1计算吸附量,使用OriginPro 2018软件将动力学数据用式(2—5)拟合[47-49]:
式中,t表示吸附时间(h);qt为t时刻的吸附量(μg·g−1);C0和Ct分别为初始MC-LR浓度和t时刻的MC-LR浓度(μg·L−1);V代表溶液体积(L);m代表生物炭的质量(g). qe、k1、k2、α、β、ki、Ci则是各模型拟合计算得到的参数,其中qe代表计算得到的平衡吸附量(μg·g−1).
准一级、准二级动力学和Elovich模型的拟合图形见图7 (a, b),拟合参数见表3. 通过比较拟合优度R2,KB和KB-2.0Mg的吸附过程用准一级动力学拟合效果较好,而HB和HB-2.0Mg的吸附过程则更符合Elovich和准二级动力学模型. 通常,准一级动力学用于描述物理作用主导的吸附,如液膜扩散机制等[50-51];准二级动力学用于描述化学吸附作用,如配位络合、电子的得失和共享、化学键的形成等机制[52];Elovich可反映发生在异质性表面的化学吸附[49, 53].
吸附过程一般可分为外部液膜扩散阶段、颗粒内扩散阶段、吸附平衡阶段[54]. 从图7(c, d)可以看出,在前期吸附未达到平衡时的阶段,颗粒内扩散模型较好地拟合,由此可见颗粒内扩散也是吸附的重要阶段性机制.
-
测定并计算在不同吸附平衡浓度下生物炭对MC-LR的吸附量(式6),利用Langmuir和Freundlich模型(式7—8)拟合绘制吸附等温线[55-56]:
式中,qe为平衡吸附量(μg·g−1),Ce为平衡浓度(μg·L−1),qm、KL、KF、n均为模型拟合得到的参数,其中qm代表拟合计算得到的最大吸附量(μg·g−1).
等温线拟合参数列于表4,拟合图形见图8. Langmuir模型假设吸附过程是发生在均质表面的单层吸附,且吸附质分子间无相互作用力;Freundlich模型是经验模型,对非均质表面以及多层吸附有较好的拟合效果,对物理吸附和化学吸附均适用[57]. 对于KB和HB,Langmuir模型和Freundlich模型的R2相差不大,说明生物炭吸附MC-LR机制是复杂的,既存在均一的单层吸附,也存在发生在非均质表面上的多层吸附. 35 ℃的qm要高于25 ℃,表明提高温度能提升生物炭对MC-LR的吸附容量.
-
图9显示了不同pH条件下生物炭对MC-LR的去除率. 由图9可以看出,不同pH会影响去除率的大小,由于MC-LR在强酸碱条件下仍能保持稳定不易分解[58],说明实验结果去除率的差异取决于生物炭吸附的差异. pH升高对未改性生物炭的吸附性能有抑制作用,尤其在pH 10的条件下其对MC-LR的去除率明显下降;而镁改性生物炭受pH的影响较小,仅pH升高到10时其吸附性能略有下降. 研究表明,MC-LR分子中的羧基和氨基在不同pH下会发生电离或离子化,使分子带有不同的净电荷:pH<2.09主要以MCLR+形式存在,pH 2.09—2.19主要是MCLR0,pH 2.19—12.48主要是MCLR−,pH>12.48则主要是MCLR2−[43]. 可见在pH 4—10区间主要以MCLR−存在. 由于镁改性生物炭的pHpzc>10,其在pH 4—10带正电,与MC-LR分子存在静电吸引;未改性生物炭pHpzc 9—10,其在pH 4—8带正电与MC-LR分子存在静电吸引,而在pH 10生物炭几乎不带电或带轻微负电,存在静电排斥. 研究表明,pH的降低能使生物炭表面的净正电荷增加[59],从而增强静电吸引,这可能是较低pH下有着较高的吸附去除率的原因. 此外,pH降低还能使MC-LR分子发生卷曲,使分子体积减小,从而促进吸附[60].
-
由于天然水中存在DOM,为探讨DOM对吸附的影响,选用没食子酸(GA)、富里酸(FA)、单宁酸(TA)做为模式DOM开展研究,结果见图10. 从图10可以看出,添加GA对生物炭吸附MC-LR的几乎没有影响,而添加FA和GA对吸附有明显的抑制作用. MC-LR的分子量为995.2 g·mol−1,分子尺寸为1.9 nm×1.5 nm×1.1 nm[45],如前文所述主要占据生物炭的中孔;而GA分子量(170.12 g·mol−1)和分子尺寸(0.90 nm×0.63 nm×0.28 nm)较小,主要占据微孔[61],与MC-LR的吸附几乎不会发生竞争作用,因此GA的添加对吸附的影响小;FA的分子量(308.24 g·mol−1)大于GA,竞争作用加强,导致生物炭吸附MC-LR减弱;TA分子量(1701.2 g·mol−1)和分子尺寸(1.93 nm×1.73 nm×1.32 nm)较大,依赖中孔填充吸附[61],与MC-LR分子竞争吸附明显,其更大的体积还会阻塞孔道,使MC-LR分子难以进入合适大小的孔隙[62-63],因此TA的添加能产生明显的抑制作用. DOM对未改性生物炭的抑制作用表现为TA>FA>GA;而对于镁改性生物炭,TA与FA的抑制作用相近,这可能是因为氯化镁改性使生物炭的中孔增加,使其不再那么“稀缺”,因而在一定程度缓解了TA和MC-LR对中孔的竞争.
-
(1)用MgCl2溶液浸渍水生植物苦草和狐尾藻,热解制备镁改性生物炭. 氯化镁改性使生物炭的比表面积和孔容增加,尤其是中孔的增加,表面含氧官能团增加. 镁改性生物炭表面负载了MgO和Mg(OH)2,并具有更高的pHpzc值.
(2)镁改性生物炭比未改性生物炭对MC-LR有更强的吸附性能,以2.0 mol·L−1的MgCl2浸渍制备的生物炭对MC-LR有最佳的去除效果. 准一级、准二级动力学、Elovich和颗粒内扩散模型能在不同程度较好地描述吸附过程. 吸附等温线符合Langmuir和Freundlich模型,且较高的温度能提升吸附容量. 较高的pH和较大分子量的DOM会抑制生物炭对MC-LR的吸附,镁改性生物炭会使pH和DOM对吸附的影响减弱.
(3)生物炭对MC-LR的吸附机理是复杂的,可能同时存在物理吸附和化学吸附作用,既存在均一的单层吸附,也可能在非均质表面上发生多层吸附. 此外,颗粒内扩散是吸附的重要阶段性过程. 中孔填充是生物炭吸附MC-LR的重要机制,生物炭和MC-LR分子间可能存在氢键、静电吸引和π+−π EDA相互作用力. 镁改性能增强中孔填充作用,并加强氢键和静电吸引力从而增强吸附.
镁改性水生植物生物炭吸附水中的微囊藻毒素-LR
Adsorption of microcystin-LR by Mg-modified aquatic plant biochar in water
-
摘要: 利用水生植物苦草和狐尾藻制备镁改性生物炭,并对生物炭的比表面积、孔隙度、元素组成、pHpzc、FTIR、XPS、XRD进行表征,开展吸附水中微囊藻毒素-LR(MC-LR)的研究. 结果表明,与未改性生物炭相比,镁改性生物炭具有较大的比表面积和中孔孔容,其表面负载有MgO和Mg(OH)2,且具有更多的含氧基团和更高的pHpzc. 以2.0 mol·L−1的MgCl2浸渍制备的镁改性生物炭对MC-LR的去除效果最佳. 准一级、准二级动力学、Elovich和颗粒内扩散模型都能在不同程度上较好地描述吸附过程. 吸附等温线符合Langmuir和Freundlich模型,且较高的温度有利于对MC-LR的吸附,而较高的pH和较大分子量的DOM会抑制吸附. 颗粒内扩散、中孔填充是吸附的重要机制,还可能存在氢键、静电吸引和π+−π EDA相互作用力. 本研究为水生植物残体资源化利用提供新的思路.Abstract: Mg-modified biochar was prepared by aquatic plants Vallisneria and Myriophyllum. The specific surface, porosity analysis, elemental analysis, pHpzc, FTIR, XPS and XRD characterization of the biochar were carried out, and the adsorption of microcystin-LR (MC-LR) was studied. The results showed that the Mg-modified biochar had larger specific surface area and mesopore volume, and its surface was loaded with MgO and Mg(OH)2, and had higher oxygen-containing group content and pHpzc. Biochar soaked with 2.0 mol·L−1 MgCl2 had the best removal effect on MC-LR. The adsorption kinetics could be well described by pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion models. The adsorption isotherms were consistent with the Langmuir and Freundlich models, and higher temperature facilitated the adsorption of MC-LR. Higher pH and higher molecular weight of DOM would inhibit adsorption. Intra-particle diffusion and mesoporous filling were the important mechanisms of adsorption. Hydrogen bonding, electrostatic attraction and π+−π EDA interaction forces may also exist. This study provides new ideas for the resource utilization of wetland aquatic plant residues.
-
Key words:
- Mg-modification /
- aquatic plants /
- biochar /
- MC-LR /
- adsorption.
-
-
表 1 生物炭的比表面和孔径分析
Table 1. Specific surface and pore size analysis of biochar
生物炭
BiocharSBET /(m2·g−1) Vtot /(cm3·g−1) Vmic /(cm3·g−1) Vmeso /(cm3·g−1) KB 7.47 2.89×10−2 1.89×10−3 1.36×10−2 HB 7.64 1.93×10−2 2.17×10−3 9.29×10−3 KB-2.0Mg 58.7 1.19×10−1 8.69×10−3 6.05×10−2 HB-2.0Mg 88.7 1.46×10−1 1.81×10−2 6.66×10−2 注:数据保留3位有效数字. 未改性生物炭的SBET、Vmic、Vmes和Vtot数据引自文献[16].
The data retains 3 significant digits. The SBET, Vmic, Vmes and Vtot are quoted from previously published literature.表 2 生物炭元素分析
Table 2. Elemental analysis of biochar
生物炭
BiocharC/% H/% N/% O/% Mg/% O/C (N+O)/C H/C KB 51.92 2.56 2.73 18.24 0.67 0.263 0.309 0.592 HB 65.40 3.12 2.56 16.78 0.97 0.192 0.226 0.572 KB-2.0Mg 39.93 2.71 2.46 15.53 4.30 0.292 0.345 0.814 HB-2.0Mg 58.86 3.10 2.25 17.93 2.01 0.228 0.261 0.632 注:C、H、N、O的含量为质量分数,Mg含量为原子数占比;O/C,(N+O)/C,H/C为原子数比;表中KB和HB的C、H、N、O数据引自先前发表的文献[16].
The content of C, H, N, O is the mass fraction, and the Mg content is the atomic ratio; O/C, (N+O)/C, H/C are the atomic ratio; the C, H, N, O data of KB and HB in the table are quoted from previously published literature.表 3 吸附动力学拟合参数
Table 3. Fitting parameters of adsorption kinetics
生物炭
BiocharPseudo-1st Pseudo-2nd Elovich k1/h−1 qe/(μg·g−1) R2 k2/(g·μg−1·h−1) qe/(μg·g−1) R2 α/(μg·g−1·h−1) β/(g·μg−1) R2 KB 2.835×10−1 52.75 0.9021 6.530×10−3 56.78 0.8332 51.22 1.018×10−1 0.7084 HB 2.801×10−1 91.78 0.8664 3.760×10−3 101.1 0.9513 111.9 5.777×10−2 0.9827 KB-2.0Mg 8.487×10−2 197.3 0.9779 3.962×10−4 234.1 0.9711 32.95 1.783×10−2 0.9567 HB-2.0Mg 8.281×10−2 203.0 0.9691 3.921×10−4 239.3 0.9776 36.32 1.795×10−2 0.9789 注:数据保留4位有效数字. The data retains 4 significant digits. 表 4 吸附等温线拟合参数
Table 4. Fitting parameters of adsorption isotherm
T/℃ Langmuir Freundlich KL/(L·μg−1) qm/(μg·g−1) R2 KF/(μg1−1/n·L 1/n·g−1) n R2 KB 25 5.046×10−2 189.7 0.6500 31.47 2.721 0.6452 35 1.803×10−2 311.2 0.7148 14.59 1.712 0.6899 HB 25 8.469×10−2 300.1 0.6706 67.97 3.089 0.6378 35 3.091×10−2 667.2 0.8925 47.40 1.816 0.8654 KB-2.0Mg 25 4.106×10−2 497.4 0.8846 52.22 2.115 0.9117 35 1.552×10−2 960.7 0.8001 36.23 1.603 0.8455 HB-2.0Mg 25 6.204×10−1 474.5 0.8242 211.1 4.301 0.8946 35 3.488×10−2 1909 0.9875 87.03 1.350 0.9796 注:数据保留4位有效数字.The data retains 4 significant digits. -
[1] BOUAÏCHA N, MILES C O, BEACH D G, et al. Structural diversity, characterization and toxicology of microcystins [J]. Toxins, 2019, 11(12): 714. doi: 10.3390/toxins11120714 [2] BURATTI F M, MANGANELLI M, VICHI S, et al. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation [J]. Archives of Toxicology, 2017, 91(3): 1049-1130. doi: 10.1007/s00204-016-1913-6 [3] 苏雅玲, 邓一荣. 富营养化湖泊中微囊藻毒素及其控制去除技术 [J]. 环境科学与技术, 2013, 36(6): 62-66,84. doi: 10.3969/j.issn.1003-6504.2013.06.013 SU Y L, DENG Y R. Microcystins in eutrophic lakes and their controlling and removing methods [J]. Environmental Science & Technology, 2013, 36(6): 62-66,84(in Chinese). doi: 10.3969/j.issn.1003-6504.2013.06.013
[4] 王东伟. 水环境中微囊藻毒素去除方法的研究进展 [J]. 黑龙江环境通报, 2019, 43(1): 40-43. WANG D W. Advances in removal of microcystins from water environmen [J]. Heilongjiang Environmental Journal, 2019, 43(1): 40-43(in Chinese).
[5] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071 [6] WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: A review [J]. Journal of Cleaner Production, 2019, 227: 1002-1022. doi: 10.1016/j.jclepro.2019.04.282 [7] 崔孝强. 水体修复植物基生物炭的环境应用及其机理研究[D]. 杭州: 浙江大学, 2018. CUI X Q. The environmental applications and corresponding mechanisms of biochar derived from aquatic eco-remediation plants[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
[8] 汪琪, 黄蔚, 吴涛, 等. 大型水生植物腐烂分解过程探讨 [J]. 绿色科技, 2020(18): 1-3. doi: 10.3969/j.issn.1674-9944.2020.18.002 WANG Q, HUANG W, WU T, et al. Discussion on the decomposition process of macrophyte [J]. Journal of Green Science and Technology, 2020(18): 1-3(in Chinese). doi: 10.3969/j.issn.1674-9944.2020.18.002
[9] WANG X Q, GUO Z Z, HU Z, et al. Recent advances in biochar application for water and wastewater treatment: A review [J]. PeerJ, 2020, 8: e9164. doi: 10.7717/peerj.9164 [10] SIZMUR T, FRESNO T, AKGÜL G, et al. Biochar modification to enhance sorption of inorganics from water [J]. Bioresource Technology, 2017, 246: 34-47. doi: 10.1016/j.biortech.2017.07.082 [11] CHEN Q C, QIN J L, CHENG Z W, et al. Synthesis of a stable magnesium-impregnated biochar and its reduction of phosphorus leaching from soil [J]. Chemosphere, 2018, 199: 402-408. doi: 10.1016/j.chemosphere.2018.02.058 [12] SHANG H R, LI Y X, LIU J Y, et al. Preparation of nitrogen doped magnesium oxide modified biochar and its sorption efficiency of lead ions in aqueous solution [J]. Bioresource Technology, 2020, 314: 123708. doi: 10.1016/j.biortech.2020.123708 [13] JIANG Y H, LI A Y, DENG H, et al. Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks [J]. Bioresource Technology, 2019, 276: 183-189. doi: 10.1016/j.biortech.2018.12.079 [14] NJUGUNA J K O, 张荣斌, 李远, 等. 镁盐改性生物质炭的合成及其在废水氮磷资源化中的应用研究 [J]. 环境科学学报, 2018, 38(11): 4383-4390. doi: 10.13671/j.hjkxxb.2018.0233 NJUGUNA J K O, ZHANG R B, LI Y, et al. Synthesis and characterization of magnesium modified biochar for ammonia and phosphorus immobilization from simulated wastewater [J]. Acta Scientiae Circumstantiae, 2018, 38(11): 4383-4390(in Chinese). doi: 10.13671/j.hjkxxb.2018.0233
[15] TAO Q, LI B, LI Q Q, et al. Simultaneous remediation of sediments contaminated with sulfamethoxazole and cadmium using magnesium-modified biochar derived from Thalia dealbata [J]. Science of the Total Environment, 2019, 659: 1448-1456. doi: 10.1016/j.scitotenv.2018.12.361 [16] 朱赫特, 郭雅欣, 陈晓, 等. 磷酸改性水生植物生物炭吸附微囊藻毒素-LR及其影响因素 [J]. 环境科学学报, 2021, 41(5): 1878-1890. doi: 10.13671/j.hjkxxb.2020.0441 ZHU H T, GUO Y X, CHEN X, et al. Adsorption of microcystin-LR by phosphoric acid modified aquatic plant biochar and its influencing factors [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1878-1890(in Chinese). doi: 10.13671/j.hjkxxb.2020.0441
[17] YANG Y, CHUN Y, SHENG G, et al. pH-dependence of pesticide adsorption by wheat-residue-derived black carbon [J]. Langmuir, 2004, 20(16): 6736-6741. doi: 10.1021/la049363t [18] UCHIMIYA M, WARTELLE L H, KLASSON K T, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil [J]. Journal of Agricultural and Food Chemistry, 2011, 59(6): 2501-2510. doi: 10.1021/jf104206c [19] NHAM N T, TAHTAMOUNI T M A, NGUYEN T D, et al. Synthesis of iron modified rice straw biochar toward arsenic from groundwater [J]. Materials Research Express, 2019, 6(11): 115528. doi: 10.1088/2053-1591/ab4b98 [20] LI R H, WANG J J, ZHOU B Y, et al. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment [J]. Journal of Cleaner Production, 2017, 147: 96-107. doi: 10.1016/j.jclepro.2017.01.069 [21] XU Z, CHEN T, DING Z H, et al. Effects of magnesium impregnation on stability and sorption performance of biochar derived from sawdust and corn husks [J]. BioResources, 2018, 14(1): 289-301. doi: 10.15376/biores.14.1.289-301 [22] ZHANG J Q, HU X L, YAN J P, et al. Crayfish shell biochar modified with magnesium chloride and its effect on lead removal in aqueous solution [J]. Environmental Science and Pollution Research International, 2020, 27(9): 9582-9588. doi: 10.1007/s11356-020-07631-9 [23] AL-WABEL M I, AL-OMRAN A, EL-NAGGAR A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from Conocarpus wastes [J]. Bioresource Technology, 2013, 131: 374-379. doi: 10.1016/j.biortech.2012.12.165 [24] 孟庆瑞, 崔心红, 朱义, 等. 载氧化镁水生植物生物炭的特性表征及对水中磷的吸附 [J]. 环境科学学报, 2017, 37(8): 2960-2967. doi: 10.13671/j.hjkxxb.2017.0075 MENG Q R, CUI X H, ZHU Y, et al. Characterization of MgO-loaded aquatic plants biochar and its adsorption capacity of phosphorus in aqueous solution [J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2960-2967(in Chinese). doi: 10.13671/j.hjkxxb.2017.0075
[25] PUZIY A M, PODDUBNAYA O I, MARTı́NEZ-ALONSO A, et al. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties [J]. Carbon, 2002, 40(9): 1493-1505. doi: 10.1016/S0008-6223(01)00317-7 [26] 申红艳, 刘有智. 纳米氢氧化镁的制备及其原位改性 [J]. 化工进展, 2017, 36(1): 294-298. doi: 10.16085/j.issn.1000-6613.2017.01.037 SHEN H Y, LIU Y Z. Preparation and in situ modification of magnesium hydroxide nanoparticles [J]. Chemical Industry and Engineering Progress, 2017, 36(1): 294-298(in Chinese). doi: 10.16085/j.issn.1000-6613.2017.01.037
[27] 富丽, 徐先英, 付贵全, 等. 五种生物质炭的特性分析 [J]. 干旱区资源与环境, 2019, 33(9): 202-208. doi: 10.13448/j.cnki.jalre.2019.257 FU L, XU X Y, FU G Q, et al. Characteristic analysis of five biochars [J]. Journal of Arid Land Resources and Environment, 2019, 33(9): 202-208(in Chinese). doi: 10.13448/j.cnki.jalre.2019.257
[28] AHMED M J, HAMEED B H. Adsorption behavior of salicylic acid on biochar as derived from the thermal pyrolysis of barley straws [J]. Journal of Cleaner Production, 2018, 195: 1162-1169. doi: 10.1016/j.jclepro.2018.05.257 [29] 翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010. WENG S F. Fourier transform infrared spectroscopy analysis[M]. 2nd edition. Beijing: Chemical Industry Press, 2010(in Chinese).
[30] 吕擎峰, 何俊峰, 王子帅, 等. 黏土矿物与碱激发地聚物的相互作用机理 [J]. 工程地质学报, 2020, 28(6): 1205-1212. doi: 10.13544/j.cnki.jeg.2019-547 LÜ Q F, HE J F, WANG Z S, et al. Study on interaction mechanism between clay minerals and alkali activated geopolymers [J]. Journal of Engineering Geology, 2020, 28(6): 1205-1212(in Chinese). doi: 10.13544/j.cnki.jeg.2019-547
[31] 刘国良, 朱一民, 房鑫, 等. 不同粒度纳米氧化镁的制备及其红外吸收特性 [J]. 东北大学学报(自然科学版), 2010, 31(8): 1192-1195. doi: 10.3969/j.issn.1005-3026.2010.08.032 LIU G L, ZHU Y M, FANG X, et al. Preparation of MgO with different nanoparticle sizes and their infrared wave absorptivities [J]. Journal of Northeastern University (Natural Science), 2010, 31(8): 1192-1195(in Chinese). doi: 10.3969/j.issn.1005-3026.2010.08.032
[32] CHEN X L, YU J, GUO S Y, et al. Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites [J]. Journal of Materials Science, 2009, 44(5): 1324-1332. doi: 10.1007/s10853-009-3273-6 [33] YOUSEFI S, GHASEMI B, TAJALLY M, et al. Optical properties of MgO and Mg(OH)2 nanostructures synthesized by a chemical precipitation method using impure brine [J]. Journal of Alloys and Compounds, 2017, 711: 521-529. doi: 10.1016/j.jallcom.2017.04.036 [34] LI Y R, ZHANG J, LIU H. Removal of chloramphenicol from aqueous solution using low-cost activated carbon prepared from Typha orientalis [J]. Water, 2018, 10(4): 351. doi: 10.3390/w10040351 [35] JING X R, WANG Y Y, LIU W J, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar [J]. Chemical Engineering Journal, 2014, 248: 168-174. doi: 10.1016/j.cej.2014.03.006 [36] FAN Y, WANG B, YUAN S H, et al. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal [J]. Bioresource Technology, 2010, 101(19): 7661-7664. doi: 10.1016/j.biortech.2010.04.046 [37] LI J M, CAO L R, YUAN Y, et al. Comparative study for microcystin-LR sorption onto biochars produced from various plant- and animal-wastes at different pyrolysis temperatures: Influencing mechanisms of biochar properties [J]. Bioresource Technology, 2018, 247: 794-803. doi: 10.1016/j.biortech.2017.09.120 [38] NIST. Magnesium Hydroxide - NIST XPS Database Detail Page[EB/OL]. (2012-09-15)[2021-02-10]. [39] NIST. Magnesium Oxide - NIST XPS Database Detail Page[EB/OL]. (2012-09-15)[2021-02-10]. [40] YAO Y, GAO B, CHEN J J, et al. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential [J]. Bioresource Technology, 2013, 138: 8-13. doi: 10.1016/j.biortech.2013.03.057 [41] 张世芝, 吴丽娃, 程振民. 硅藻土零电荷点及吸附行为分析 [J]. 重庆理工大学学报(自然科学), 2012, 26(2): 35-39. ZHANG S Z, WU L W, CHENG Z M. Study on point of zero charge and adsorption of the diatomite [J]. Journal of Chongqing University of Technology (Natural Science), 2012, 26(2): 35-39(in Chinese).
[42] ABBAS Z, ALI S, RIZWAN M, et al. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar [J]. Arabian Journal of Geosciences, 2018, 11(16): 448. doi: 10.1007/s12517-018-3790-1 [43] de MAAGD P G J, HENDRIKS A J, SEINEN W, et al. pH-dependent hydrophobicity of the cyanobacteria toxin microcystin-LR [J]. Water Research, 1999, 33(3): 677-680. doi: 10.1016/S0043-1354(98)00258-9 [44] KOSMULSKI M. Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks' review [J]. Advances in Colloid and Interface Science, 2016, 238: 1-61. doi: 10.1016/j.cis.2016.10.005 [45] PENDLETON P, SCHUMANN R, WONG S H. Microcystin-LR adsorption by activated carbon [J]. Journal of Colloid and Interface Science, 2001, 240(1): 1-8. doi: 10.1006/jcis.2001.7616 [46] LIU B L, FU M M, XIANG L, et al. Adsorption of microcystin contaminants by biochars derived from contrasting pyrolytic conditions: Characteristics, affecting factors, and mechanisms [J]. Science of the Total Environment, 2021, 763: 143028. doi: 10.1016/j.scitotenv.2020.143028 [47] LI F, SHEN K X, LONG X L, et al. Preparation and characterization of biochars from eichornia crassipes for cadmium removal in aqueous solutions [J]. PLoS One, 2016, 11(2): e0148132. doi: 10.1371/journal.pone.0148132 [48] CHEN T W, LUO L, DENG S H, et al. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure [J]. Bioresource Technology, 2018, 267: 431-437. doi: 10.1016/j.biortech.2018.07.074 [49] HOSLETT J, GHAZAL H, KATSOU E, et al. The removal of tetracycline from water using biochar produced from agricultural discarded material [J]. Science of the Total Environment, 2021, 751: 141755. doi: 10.1016/j.scitotenv.2020.141755 [50] HO Y S, MCKAY G. Pseudo-second order model for sorption processes [J]. Process Biochemistry, 1999, 34(5): 451-465. doi: 10.1016/S0032-9592(98)00112-5 [51] 李旭, 季宏兵, 张言, 等. 不同制备温度下水生植物生物炭吸附Cd2+研究 [J]. 水处理技术, 2019, 45(9): 68-73,77. LI X, JI H B, ZHANG Y, et al. Adsorption characteristics and mechanism of Cd2+ on biochar with different pyrolysis temperatures produced from hydrophyte [J]. Technology of Water Treatment, 2019, 45(9): 68-73,77(in Chinese).
[52] HAMEED B H, TAN I A W, AHMAD A L. Adsorption isotherm, kinetic modeling and mechanism of 2, 4, 6-trichlorophenol on coconut husk-based activated carbon [J]. Chemical Engineering Journal, 2008, 144(2): 235-244. doi: 10.1016/j.cej.2008.01.028 [53] JANG H M, YOO S, PARK S, et al. Engineered biochar from pine wood: Characterization and potential application for removal of sulfamethoxazole in water [J]. Environmental Engineering Research, 2019, 24(4): 608-617. [54] MA Y F, LI P, YANG L, et al. Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal [J]. Ecotoxicology and Environmental Safety, 2020, 196: 110550. doi: 10.1016/j.ecoenv.2020.110550 [55] MAHDI Z, EL HANANDEH A, YU Q J. Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103379. doi: 10.1016/j.jece.2019.103379 [56] ZAZYCKI M A, GODINHO M, PERONDI D, et al. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions [J]. Journal of Cleaner Production, 2018, 171: 57-65. doi: 10.1016/j.jclepro.2017.10.007 [57] LI Y G, LI Q Q, WU C X, et al. The inappropriate application of the regression Langmuir Qm for adsorption capacity comparison [J]. Science of the Total Environment, 2020, 699: 134222. doi: 10.1016/j.scitotenv.2019.134222 [58] HARADA K I, TSUJI K, WATANABE M F, et al. Stability of microcystins from cyanobacteria—III. effect of pH and temperature [J]. Phycologia, 1996, 35(sup6): 83-88. doi: 10.2216/i0031-8884-35-6S-83.1 [59] GONÇALVES M G, da SILVA VEIGA P A, FORNARI M R, et al. Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange [J]. Science of the Total Environment, 2020, 748: 141381. doi: 10.1016/j.scitotenv.2020.141381 [60] HUANG W J, CHENG B L, CHENG Y L. Adsorption of microcystin-LR by three types of activated carbon [J]. Journal of Hazardous Materials, 2007, 141(1): 115-122. doi: 10.1016/j.jhazmat.2006.06.122 [61] XIAO X Y, LI F L, HUANG J X, et al. Reduced adsorption of propanil to black carbon: Effect of dissolved organic matter loading mode and molecule size [J]. Environmental Toxicology and Chemistry, 2012, 31(6): 1187-1193. doi: 10.1002/etc.1800 [62] QIU Y P, XIAO X Y, CHENG H Y, et al. Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter [J]. Environmental Science & Technology, 2009, 43(13): 4973-4978. [63] CAMPINAS M, VIEGAS R M C, ROSA M J. Modelling and understanding the competitive adsorption of microcystins and tannic acid [J]. Water Research, 2013, 47(15): 5690-5699. doi: 10.1016/j.watres.2013.06.048 -