-
人造高分子聚合物塑料由于其延展性好、种类多样、成本低、经久耐用,被广泛应用于工业、农业、医药、市政等多个领域,同时给全球环境带来了巨大的塑料污染问题。 在全球范围内,只有18%的塑料垃圾被回收,24%被焚烧,其余大部分塑料垃圾被填埋或丢弃在土壤环境中,造成污染,危害生态环境[1]。 释放到环境中的塑料由于物理、化学和生物作用发生老化和降解,最终形成微塑料。2004年科学家首次提出“微塑料”概念[2],后来被定义为“直径或长度小于5 mm的塑料颗粒、碎片或纤维”[3]。
已有研究表明微塑料在环境中具有丰度高、传输距离长、分布广泛的特性。 近年来,微塑料不仅大量出现在海水及海洋沉积物中,而且在极地冰川和高原湖泊中也被检测出[4-5]。 随着微塑料相关研究的不断深入开展,研究人员发现微塑料会随着食物链不断迁移、累积,最终可能对人类健康造成威胁[6]。 微塑料污染问题已引起人们的特别关注,成为近年来环境污染最重要的主题之一[7-8]。但目前人们对微塑料在河口海岸区域的分布特征及生物效应认识还不充分。 本文围绕微塑料在全球范围内不同地理位置(包括大西洋、太平洋、欧洲、亚洲、非洲等)河口海岸区域内不同环境介质(表层水和沉积物)中的丰度、类型、尺寸等分布特征,以及微塑料在河口海岸区域的生物摄入、生物毒性、微生物效应等方面进行了综述,并对未来的研究重点进行了展望。
微塑料在河口海岸环境的检测、分布、归趋以及生物和环境效应
Distribution, fate, and biological and environmental effects of microplastics in estuarine and coastal environments
-
摘要: 微塑料污染已成为全球性的环境问题。 综合分析微塑料的分布归趋以及效应是保障环境和生态健康的关键。本文对微塑料在河口海岸环境中的分布特点、环境归趋、载体效应、海洋生物的摄入以及毒性效应等内容进行综述。 地表径流及洋流作用显著影响微塑料在河口海岸及海洋中的赋存;微塑料表面形成的生物膜会影响其环境归趋和生物效应;海水中的微塑料可作为载体富集污染物和入侵物种,带来外来物种入侵等新的环境问题;海洋生物对微塑料的摄入会引起其体内微塑料积累,改变其肠道微生物的活性和群落结构,并改变生物行为;微塑料暴露会对海洋生物产生多种毒性效应:如肝脏毒性、神经毒性以及生殖毒性等。 本综述可为河口区域微塑料污染的安全评估提供参考,对河口区域水环境安全也有科学价值。Abstract: Microplastic pollution is now a global environmental problem. Comprehensive analysis of the distribution, fate, and effects of microplastics is the key to ensuring environmental health. This paper summarizes the distribution characteristics, environmental fate, carrier effect, and biological uptake and toxicity effects of microplastics in estuarine and coastal environments. While surface runoff and ocean currents significantly affect the occurrence of microplastics in estuaries, coasts and oceans, biofilms forming on the surface of microplastics also significantly affect their environmental fate and biological effects. Microplastics in seawater can absorb and enrich pollutants and become carrier of invasive species. The vector effects of microplastics may bring in new environmental problems. Ingestion of microplastics by marine organisms caused tissue accumulation and adversely affected their digestive system. Exposure to microplastics lead to various toxic effects on marine organisms, such as liver toxicity, neurotoxicity, and reproductive toxicity, and changed their behaviors. This review can be a reference for the risk assessment of microplastic pollution in the estuary area, and its water security.
-
Key words:
- microplastics /
- biofilm /
- vector effects /
- digestive system /
- toxicity
-
表 1 河口海岸环境中微塑料分布特点
Table 1. Characteristics of microplastics in estuarine and coastal environments
研究区域
Study area样本来源
Sample source微塑料种类
Microplastic type微塑料尺寸
Microplastic size微塑料丰度
Microplastic abundance微塑料形状
Microplastic shape参考文献
Reference新南威尔士州海港 沉积物 聚对苯二甲酸乙二醇酯、尼龙 0.1—3 mm 83—350 particles·kg−1 球粒、纤维 [18] 德国莱茵河和梅因河地区 沉积物 聚乙烯、聚丙烯、聚苯乙烯 0.063—5 mm 4000 particles·kg−1 碎片 [25] 阿尔及利亚安纳巴湾 沉积物 聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚苯乙烯 纤维状:(2.16 ±
0.34) mm
薄膜状:(2.14 ±
0.19 )mm
泡沫状:(1.87 ±
0.16 )mm
碎片状:(1.82 ±
0.16 )mm
颗粒状:(0.81 ±
0.06) mm(649.33 ± 184.02) particles·kg−1 纤维、碎片、薄膜、泡沫、颗粒 [10] 西北太平洋 表层水 聚乙烯、聚丙烯、聚酯、聚苯乙烯、聚乙烯-聚丙烯共混物、聚对苯二甲酸乙二醇酯、聚酰胺 0.3—5 mm 2.7 × 103—
2.2 × 105 items·km−2碎片、颗粒、纤维、线、膜、泡沫 [16] 太平洋东北部、不列颠哥伦比亚海岸 表层水 — (606 ± 221) μm 8—9180 particles·m−3 纤维、碎片 [27] 阿拉伯海湾 表层水 聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯 1—5 mm 4.38×106—1.36×106 items·km−2 纤维 [23] 孟加拉湾 表层水 聚乙烯、聚丙烯 — (2.04 ± 2.26) items·m−2 碎片 [9] 印度南安达曼海滩 沉积物 聚丙烯、聚苯乙烯、聚氯乙烯、聚丁二烯 500—1000 μm (414.35±87.4) particles·kg−1 碎片、纤维 [12] 印度普杜切里海滩 沉积物 聚丙烯、聚乙烯、聚苯乙烯、聚氨酯 300 μm—1 mm (720.30 ± 191.60) particles·kg−1 碎片 [19] 韩国南部海岸 表层水 油漆 — (195 ± 114) particles·L−1 颗粒 [26] 越南城市河流 表层水 聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯 50—250 μm 172000—519000 items·m−3 纤维、碎片 [21] 南沙群岛 表层水 聚氯乙烯、聚酰胺、聚乙烯 < 0.5 mm 1733 items·m−3 微珠 [17] 珠江口 表层水 聚酰胺、玻璃纸 < 0.5 mm 8902 items·m−3 薄膜、碎片 [15] 中国胶州湾 表层水 聚对苯二甲酸乙二醇酯、聚丙烯、聚乙烯、聚酰胺、
聚氯乙烯< 4 mm 20—120 items·m−3 纤维 [14] 沉积物 聚对苯二甲酸乙二醇酯、聚丙烯、聚乙烯、聚酰胺、聚氯乙烯、聚苯乙烯 < 4 mm 7—25 items·kg−1 纤维 [14] 黄河近河口 表层水 聚乙烯、聚丙烯、聚苯乙烯 < 0.2 mm 旱季:930 item·L−1、
雨季:497 item·L−1纤维 [13] 北黄海表层 表层水 聚乙烯 < 1 mm (545 ± 282) items·m−3 薄膜、纤维 [20] 椒江河口、瓯江河口、闽江河口 表层水 聚乙烯、聚丙烯 0.5—5 mm (955.6 ± 848.7) items·m−3、
(680.0 ± 284.6) items·m−3、
(1245.8 ±531.5) items·m−3纤维、颗粒 [24] 南海北部 表层水 聚乙烯 1—1.9 mm 0.26—0.84 items·m−3 纤维 [11] 渤海 表层水 聚乙烯、聚丙烯、聚苯乙烯 0.005—23.5 cm (0.33±0.34) particles·m−3 碎片、纤维、薄膜 [22] 表 2 海洋生物体内微塑料丰度
Table 2. Ingestion and accumulation of microplastics in marine organisms
调查物种
Investigated species国家
Country区域
Region微塑料丰度
Microplastic abundance参考文献
Reference鱼类 印度 东南沿海 0.1—5.3 items·individuals−1 [61] 鱼类 澳大利亚 悉尼港 0.2—4.6 items·individuals−1 [66] 鱼类 西班牙 巴利阿里群岛 2.47—4.89 items·individuals−1 [67] 鱼类 美国 东海岸 1.8—110 items·individuals−1 [62] 鱼类 哥斯达黎加 太平洋沿岸 32—42 items·individuals−1 [64] 鱼类 南非 南非沿海 2.8—4.6 items·individuals−1 [59] 鱼类 英国 英吉利海峡海域 3.89 items·individuals−1 [72] 贝类 土耳其 土耳其海岸 0.69 items·individuals−1 [63] 贝类 土耳其 黑海 1.69—4 items·individuals−1 [60] 贝类 法国、比利时、荷兰 沿岸海域 (0.2 ± 0.3) items·g -1 [68] 贝类 中国 东部沿海 2.1—10.5 items·g -1 [69] 贝类 伊朗 波斯湾 0.2—21.0 items·g -1 [65] 浮游动物 韩国 南部海域 雨季前:0.016 items·individuals−1
雨季后:0.004 items·individuals−1[70] 浮游动物 中国 渤海 8月:0.117 items·individuals−1
11月:0.056 items·individuals−1[58] 浮游动物 加拿大 太平洋东北海域 0.029 items·individuals−1 [71] 磷虾 加拿大 太平洋东北海域 0.059 items·individuals−1 [71] 肺线虫 法国、比利时、荷兰 沿岸海域 (1.2 ± 2.8) items·g -1 [68] 表 3 微塑料暴露对海洋生物的毒性效应
Table 3. Toxicities of microplastic exposure on marine organisms
物种
Species物种拉丁名
Latin name of species微塑料种类
Microplastic type尺寸
Size暴露浓度
Exposure concentration毒性效应
Toxicity参考文献
Reference大黄鱼 Large yellow croaker 聚苯乙烯 100 μm — 肠道菌群结构发生改变,肠道呈现不健康状态 [75] 杜氏双边鱼 Pisces duobula latera 聚对苯二甲酸乙二醇酯 2 mm 0.025、0.055、0.083、
0.1 mg·L−1生长缓慢、存活率下降 [95] 眼斑双锯鱼 Ocellaris Amphiprius 聚乙烯 180—212 mm 0.04、0.2、0.4、
2 mg·L−1摄食行为发生改变 [84] 云纹石斑鱼 Clouded grouper 聚苯乙烯 20—100 μm 2.0、20 mg·g−1 造成肝脏脂质代谢紊乱 [86] 三刺鱼 Tres lapides 聚乙烯 球状27—32 μm
纤维状500 μm100 000 particles·L−1 微塑料在肠道和鳃中滞留 [76] 罗非鱼 Tilapia mossambica 聚苯乙烯 0.3、 5、70—90 μm 0.1 mg·L−1 造成神经毒性和氧化应激、影响肝脏代谢 [88] 尖齿胡鲶 Clarias gariepinus 聚氯乙烯 (95.41 ± 4.23) μm 0.5%、1.5%、3.0%
of diet造成氧化应激和肝脏损伤 [89] 尖齿胡鲶 Clarias gariepinus 聚氯乙烯 (95.41 ± 4.23) μm 0.50%、1.50%、3.0%
of diet造成神经毒性和氧化应激 [89] 突唇白鲑 Salmonium album labiis arrogantibus 聚苯乙烯 90 mm 7.5、30 particles·mL−1 子代未获得遗传适应性 [92] 白鲷 Culptor albus 聚苯乙烯 500—1000 μm 4241 particles·m−3 摄食行为改变 [85] 光鱾 Light 聚苯乙烯 8 μm 0.001、 0.01 g·d−1 造成肠道损伤 [77] 褐鳟 Brown trout 聚乙烯,聚对苯二甲酸乙二醇酯,聚苯乙烯 3000 μm 2.8 mg·L−1 造成遗传毒性 [91] 虹鳟 Rainbow trouba 聚苯乙烯 220 nm 50 mg·L−1 造成细胞毒性和基因毒性 [96] 黑头软口鲦 Pimephales promelas 轮胎橡胶颗粒 38—355 μm 300、1900、
6000 mg·L−1被摄食并在消化道内积累 [65] 条纹鲮脂鲤 Prochilodus lineatus 聚乙烯 10—90 μm 0.02 mg·L−1 增加可吸附铜离子对条纹鲮脂鲤的毒性 [54] 泥鳅 Loach 聚氯乙烯 < 10 μm 50 mg·L−1 造成肝脏损伤 [90] 贻贝 Mytilus edulis 高密度聚乙烯 0—80 μm 2.5 g·L−1 影响免疫和溶酶体膜稳定性 [80] 太平洋牡蛎 Crassostrea gigas 聚苯乙烯 2 、 6 μm 0.023 mg·L−1 影响生长发育和生殖细胞质量 [97] 日本新糠虾 Neomysis Japonia 聚苯乙烯 5 μm 10 mg·mL−1 降低摄食率、改变捕食行为 [86] 丰年虾 Met shrimps 聚苯乙烯 1、 3、 6、10 μm 1 、1000 particles·mL−1 乙酰胆碱酯酶(AChE)活性被显著抑制 [81] 白虾 White shrimp 聚苯乙烯 44 μm 50 μg·mL−1 肠道微生物活性发生改变 [98] 红鳌螯虾 Cherax quadricarinatus 聚苯乙烯 200 μm 0、0.5、5 mg·L−1 造成脂质代谢紊乱 [55] 中华绒鳌蟹 Eriocheir sinensis 聚苯乙烯 5 μm 0、0.04、 0.4、4、
40 g·L−1肠道菌群组成和多样性发生改变 [82] 沙蚕 Arenicola marina 聚苯乙烯 400—1300 μm 0、1、10、100 g·L−1 影响摄食活跃性和生长 [48] 海胆 Tripneustes gratilla 聚乙烯 25—32 μm 1—300 particles·mL−1 生物放大效应 [79] 桡足类 Calanus helgolandicus 聚苯乙烯 20 μm 75 particles·mL−1 摄食量、死亡率、卵形态等发生改变 [78] -
[1] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782 [2] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [3] ROCHA-SANTOS T, DUARTE A C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment [J]. TrAC Trends in Analytical Chemistry, 2015, 65: 47-53. doi: 10.1016/j.trac.2014.10.011 [4] OBBARD R W, SADRI S, WONG Y Q, et al. Global warming releases microplastic legacy frozen in Arctic Sea ice [J]. Earth’s Future, 2014, 2(6): 315-320. doi: 10.1002/2014EF000240 [5] FREE C M, JENSEN O P, MASON S A, et al. High-levels of microplastic pollution in a large, remote, mountain lake [J]. Marine Pollution Bulletin, 2014, 85(1): 156-163. doi: 10.1016/j.marpolbul.2014.06.001 [6] RICO C M, MAJUMDAR S, DUARTE-GARDEA M, et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain [J]. Journal of Agricultural and Food Chemistry, 2011, 59(8): 3485-3498. doi: 10.1021/jf104517j [7] HALL N M, BERRY K E, RINTOUL L, et al. Microplastic ingestion by scleractinian corals [J]. Marine Biology, 2015, 162(3): 725-732. doi: 10.1007/s00227-015-2619-7 [8] LAW K L, THOMPSON R C. Oceans. microplastics in the seas [J]. Science, 2014, 345(6193): 144-145. doi: 10.1126/science.1254065 [9] LI C J, WANG X H, LIU K, et al. Pelagic microplastics in surface water of the Eastern Indian Ocean during monsoon transition period: Abundance, distribution, and characteristics [J]. Science of the Total Environment, 2021, 755: 142629. doi: 10.1016/j.scitotenv.2020.142629 [10] TATA T, BELABED B E, BOUOUDINA M, et al. Occurrence and characterization of surface sediment microplastics and litter from North African coasts of Mediterranean Sea: Preliminary research and first evidence [J]. Science of the Total Environment, 2020, 713: 136664. doi: 10.1016/j.scitotenv.2020.136664 [11] QI H Y, FU D D, WANG Z Z, et al. Microplastics occurrence and spatial distribution in seawater and sediment of Haikou Bay in the northern South China Sea [J]. Estuarine, Coastal and Shelf Science, 2020, 239: 106757. doi: 10.1016/j.ecss.2020.106757 [12] PATCHAIYAPPAN A, AHMED S Z, DOWARAH K, et al. Occurrence, distribution and composition of microplastics in the sediments of South Andaman beaches [J]. Marine Pollution Bulletin, 2020, 156: 111227. doi: 10.1016/j.marpolbul.2020.111227 [13] HAN M, NIU X R, TANG M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary [J]. Science of the Total Environment, 2020, 707: 135601. doi: 10.1016/j.scitotenv.2019.135601 [14] ZHENG Y F, LI J X, CAO W, et al. Distribution characteristics of microplastics in the seawater and sediment: A case study in Jiaozhou Bay, China [J]. Science of the Total Environment, 2019, 674: 27-35. doi: 10.1016/j.scitotenv.2019.04.008 [15] YAN M T, NIE H Y, XU K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River Estuary, China [J]. Chemosphere, 2019, 217: 879-886. doi: 10.1016/j.chemosphere.2018.11.093 [16] PAN Z, LIU Q L, SUN Y, et al. Environmental implications of microplastic pollution in the Northwestern Pacific Ocean [J]. Marine Pollution Bulletin, 2019, 146: 215-224. doi: 10.1016/j.marpolbul.2019.06.031 [17] NIE H Y, WANG J, XU K H, et al. Microplastic pollution in water and fish samples around Nanxun Reef in Nansha Islands, South China Sea [J]. Science of the Total Environment, 2019, 696: 134022. doi: 10.1016/j.scitotenv.2019.134022 [18] JAHAN S, STREZOV V, WELDEKIDAN H, et al. Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia [J]. Science of the Total Environment, 2019, 695: 133924. doi: 10.1016/j.scitotenv.2019.133924 [19] DOWARAH K, DEVIPRIYA S P. Microplastic prevalence in the beaches of Puducherry, India and its correlation with fishing and tourism/recreational activities [J]. Marine Pollution Bulletin, 2019, 148: 123-133. doi: 10.1016/j.marpolbul.2019.07.066 [20] ZHU L, BAI H Y, CHEN B J, et al. Microplastic pollution in North Yellow Sea, China: Observations on occurrence, distribution and identification [J]. Science of the Total Environment, 2018, 636: 20-29. doi: 10.1016/j.scitotenv.2018.04.182 [21] LAHENS L, STRADY E, KIEU-LE T C, et al. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity [J]. Environmental Pollution, 2018, 236: 661-671. doi: 10.1016/j.envpol.2018.02.005 [22] ZHANG W W, ZHANG S F, WANG J Y, et al. Microplastic pollution in the surface waters of the Bohai Sea, China [J]. Environmental Pollution, 2017, 231: 541-548. doi: 10.1016/j.envpol.2017.08.058 [23] ABAYOMI O A, RANGE P, AL-GHOUTI M A, et al. Microplastics in coastal environments of the Arabian Gulf [J]. Marine Pollution Bulletin, 2017, 124(1): 181-188. doi: 10.1016/j.marpolbul.2017.07.011 [24] ZHAO S Y, ZHU L X, LI D J. Microplastic in three urban estuaries, China [J]. Environmental Pollution, 2015, 206: 597-604. doi: 10.1016/j.envpol.2015.08.027 [25] KLEIN S, WORCH E, KNEPPER T P. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-main area in Germany [J]. Environmental Science & Technology, 2015, 49(10): 6070-6076. [26] SONG Y K, HONG S H, JANG M, et al. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer [J]. Environmental Science & Technology, 2014, 48(16): 9014-9021. [27] DESFORGES J P W, GALBRAITH M, DANGERFIELD N, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean [J]. Marine Pollution Bulletin, 2014, 79(1/2): 94-99. [28] HUSERBRÅTEN M B O, HATTERMANN T, BROMS C, et al. Trans-polar drift-pathways of riverine European microplastic [J]. Scientific Reports, 2022, 12(1): 3016. doi: 10.1038/s41598-022-07080-z [29] KANE I A, CLARE M A, MIRAMONTES E, et al. Seafloor microplastic hotspots controlled by deep-sea circulation [J]. Science, 2020, 368(6495): 1140-1145. doi: 10.1126/science.aba5899 [30] 徐沛, 彭谷雨, 朱礼鑫, 等. 长江口微塑料时空分布及风险评价 [J]. 中国环境科学, 2019, 39(5): 2071-2077. doi: 10.3969/j.issn.1000-6923.2019.05.035 XU P, PENG G Y, ZHU L X, et al. Spatial-temporal distribution and pollution load of microplastics in the Changjiang Estuary [J]. China Environmental Science, 2019, 39(5): 2071-2077(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.05.035
[31] FOK L, CHEUNG P K, TANG G D, et al. Size distribution of stranded small plastic debris on the coast of Guangdong, South China [J]. Environmental Pollution, 2017, 220: 407-412. doi: 10.1016/j.envpol.2016.09.079 [32] CORCORAN P L, NORRIS T, CECCANESE T, et al. Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record [J]. Environmental Pollution, 2015, 204: 17-25. doi: 10.1016/j.envpol.2015.04.009 [33] CHAE D H, KIM I S, KIM S K, et al. Abundance and distribution characteristics of microplastics in surface seawaters of the incheon/kyeonggi coastal region [J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 269-278. doi: 10.1007/s00244-015-0173-4 [34] LUSHER A L, TIRELLI V, O’CONNOR I, et al. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples [J]. Scientific Reports, 2015, 5: 14947. doi: 10.1038/srep14947 [35] PENG G Y, ZHU B S, YANG D Q, et al. Microplastics in sediments of the Changjiang Estuary, China [J]. Environmental Pollution, 2017, 225: 283-290. doi: 10.1016/j.envpol.2016.12.064 [36] YU X B, PENG J P, WANG J D, et al. Occurrence of microplastics in the beach sand of the Chinese inner sea: The Bohai Sea [J]. Environmental Pollution, 2016, 214: 722-730. doi: 10.1016/j.envpol.2016.04.080 [37] CHEN M L, JIN M, TAO P R, et al. Assessment of microplastics derived from mariculture in Xiangshan Bay, China [J]. Environmental Pollution, 2018, 242: 1146-1156. doi: 10.1016/j.envpol.2018.07.133 [38] XUE B M, ZHANG L L, LI R L, et al. Underestimated microplastic pollution derived from fishery activities and hidden in deep sediment [J]. Environmental Science & Technology, 2020, 54(4): 2210-2217. [39] LIU R P, DONG Y, QUAN G C, et al. Microplastic pollution in surface water and sediments of Qinghai-Tibet Plateau: Current status and causes [J]. China Geology, 2021, 4(1): 1-7. [40] WANG W F, YUAN W K, CHEN Y L, et al. Microplastics in surface waters of Dongting Lake and Hong Lake, China [J]. Science of the Total Environment, 2018, 633: 539-545. doi: 10.1016/j.scitotenv.2018.03.211 [41] CHEUNG P K, FOK L, LAM HUNG P, et al. Spatio-temporal comparison of neustonic microplastic density in Hong Kong waters under the influence of the Pearl River Estuary [J]. Science of the Total Environment, 2018, 628/629: 731-739. doi: 10.1016/j.scitotenv.2018.01.338 [42] 朱晓桐, 衣俊, 强丽媛, 等. 长江口潮滩表层沉积物中微塑料的分布及沉降特点 [J]. 环境科学, 2018, 39(5): 2067-2074. ZHU X T, YI J, QIANG L Y, et al. Distribution and Settlement of microplastics in the surface sediment of Yangtze Estuary [J]. Environmental Science, 2018, 39(5): 2067-2074(in Chinese).
[43] P–FACTSP. An analysis of European plastics production, demand and waste data for 2011 [C]. [44] SOORIYAKUMAR P, BOLAN N, KUMAR M, et al. Biofilm formation and its implications on the properties and fate of microplastics in aquatic environments: A review [J]. Journal of Hazardous Materials Advances, 2022, 6: 100077. doi: 10.1016/j.hazadv.2022.100077 [45] SHI L, LIU J D, GAO B, et al. Photoelectrocatalytic mechanism of PEDOT modified filtration membrane [J]. Science of the Total Environment,2022,813:152397. [46] MATO Y, ISOBE T, TAKADA H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment [J]. Environmental Science & Technology, 2001, 35(2): 318-324. [47] NOBRE C R, SANTANA M F M, MALUF A, et al. Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea) [J]. Marine Pollution Bulletin, 2015, 92(1/2): 99-104. [48] BESSELING E, WEGNER A, FOEKEMA E M, et al. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L. ) [J]. Environmental Science & Technology, 2013, 47(1): 593-600. [49] MA H, PU S Y, LIU S B, et al. Microplastics in aquatic environments: Toxicity to trigger ecological consequences [J]. Environmental Pollution, 2020, 261: 114089. doi: 10.1016/j.envpol.2020.114089 [50] RICHARD H, CARPENTER E J, KOMADA T, et al. Biofilm facilitates metal accumulation onto microplastics in estuarine waters [J]. Science of the Total Environment, 2019, 683: 600-608. doi: 10.1016/j.scitotenv.2019.04.331 [51] QI K, LU N, ZHANG S Q, et al. Uptake of Pb(II) onto microplastic-associated biofilms in freshwater: Adsorption and combined toxicity in comparison to natural solid substrates [J]. Journal of Hazardous Materials, 2021, 411: 125115. doi: 10.1016/j.jhazmat.2021.125115 [52] LUÍS L G, FERREIRA P, FONTE E, et al. Does the presence of microplastics influence the acute toxicity of chromium(VI) to early juveniles of the common goby (Pomatoschistus microps)?A study with juveniles from two wild estuarine populations [J]. Aquatic Toxicology, 2015, 164: 163-174. doi: 10.1016/j.aquatox.2015.04.018 [53] ZHU X T, QIANG L Y, SHI H H, et al. Bioaccumulation of microplastics and its in vivo interactions with trace metals in edible oysters [J]. Marine Pollution Bulletin, 2020, 154: 111079. doi: 10.1016/j.marpolbul.2020.111079 [54] RODA J F B, MACHADO LAUER M, RISSO W E, et al. Microplastics and copper effects on the neotropical teleost Prochilodus lineatus: Is there any interaction? [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2020, 242: 110659. [55] CHEN Q, LV W W, JIAO Y, et al. Effects of exposure to waterborne polystyrene microspheres on lipid metabolism in the hepatopancreas of juvenile redclaw crayfish, Cherax quadricarinatus [J]. Aquatic Toxicology, 2020, 224: 105497. doi: 10.1016/j.aquatox.2020.105497 [56] BARNES D K A. Invasions by marine life on plastic debris [J]. Nature, 2002, 416(6883): 808-809. doi: 10.1038/416808a [57] RECH S, BORRELL Y, GARCÍA-VAZQUEZ E. Marine litter as a vector for non-native species: What we need to know [J]. Marine Pollution Bulletin, 2016, 113(1/2): 40-43. [58] ZHENG S, ZHAO Y F, LIANGWEI W H, et al. Characteristics of microplastics ingested by zooplankton from the Bohai Sea, China [J]. Science of the Total Environment, 2020, 713: 136357. doi: 10.1016/j.scitotenv.2019.136357 [59] SPARKS C, IMMELMAN S. Microplastics in offshore fish from the Agulhas Bank, South Africa [J]. Marine Pollution Bulletin, 2020, 156: 111216. doi: 10.1016/j.marpolbul.2020.111216 [60] ŞENTÜRK Y, ESENSOY F B, AYTAN Ü. Seasonal and spatial distribution of Noctilucoid dinoflagellates (Noctilucales, Dinophyceae) in the Southeastern Black Sea [J]. Regional Studies in Marine Science, 2020, 40: 101511. doi: 10.1016/j.rsma.2020.101511 [61] SATHISH M N, JEYASANTA I, PATTERSON J. Occurrence of microplastics in epipelagic and mesopelagic fishes from tuticorin, southeast coast of India [J]. Science of the Total Environment, 2020, 720: 137614. doi: 10.1016/j.scitotenv.2020.137614 [62] PARKER B W, BECKINGHAM B A, INGRAM B C, et al. Microplastic and tire wear particle occurrence in fishes from an urban estuary: Influence of feeding characteristics on exposure risk [J]. Marine Pollution Bulletin, 2020, 160: 111539. doi: 10.1016/j.marpolbul.2020.111539 [63] GEDIK K, ERYAŞAR A R. Microplastic pollution profile of Mediterranean mussels (Mytilus galloprovincialis) collected along the Turkish coasts [J]. Chemosphere, 2020, 260: 127570. doi: 10.1016/j.chemosphere.2020.127570 [64] BERMÚDEZ-GUZMÁN L, ALPÍZAR-VILLALOBOS C, GATGENS-GARCÍA J, et al. Microplastic ingestion by a herring Opisthonema sp. in the Pacific coast of Costa Rica [J]. Regional Studies in Marine Science, 2020, 38: 101367. doi: 10.1016/j.rsma.2020.101367 [65] NAJI A, NURI M, DICK VETHAAK A. Microplastics contamination in molluscs from the northern part of the Persian Gulf [J]. Environmental Pollution, 2018, 235: 113-120. doi: 10.1016/j.envpol.2017.12.046 [66] HALSTEAD J E, SMITH J A, CARTER E A, et al. Assessment tools for microplastics and natural fibres ingested by fish in an urbanised estuary [J]. Environmental Pollution, 2018, 234: 552-561. doi: 10.1016/j.envpol.2017.11.085 [67] NADAL M A, ALOMAR C, DEUDERO S. High levels of microplastic ingestion by the semipelagic fish bogue Boops boops (L. ) around the Balearic Islands [J]. Environmental Pollution, 2016, 214: 517-523. doi: 10.1016/j.envpol.2016.04.054 [68] van CAUWENBERGHE L, CLAESSENS M, VANDEGEHUCHTE M B, et al. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats [J]. Environmental Pollution, 2015, 199: 10-17. doi: 10.1016/j.envpol.2015.01.008 [69] LI J N, YANG D Q, LI L, et al. Microplastics in commercial bivalves from China [J]. Environmental Pollution, 2015, 207: 190-195. doi: 10.1016/j.envpol.2015.09.018 [70] KANG J H, KWON O Y, SHIM W J. Potential threat of microplastics to zooplanktivores in the surface waters of the southern sea of Korea [J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 340-351. doi: 10.1007/s00244-015-0210-3 [71] DESFORGES J P W, GALBRAITH M, ROSS P S. Ingestion of microplastics by zooplankton in the northeast Pacific Ocean [J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 320-330. doi: 10.1007/s00244-015-0172-5 [72] COLLARD F, GILBERT B, EPPE G, et al. Detection of anthropogenic particles in fish stomachs: An isolation method adapted to identification by Raman spectroscopy [J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 331-339. doi: 10.1007/s00244-015-0221-0 [73] JABEEN K, SU L, LI J N, et al. Microplastics and mesoplastics in fish from coastal and fresh waters of China [J]. Environmental Pollution, 2017, 221: 141-149. doi: 10.1016/j.envpol.2016.11.055 [74] LaPLACA S B, van den HURK P. Toxicological effects of micronized tire crumb rubber on mummichog (Fundulus heteroclitus) and fathead minnow (Pimephales promelas) [J]. Ecotoxicology, 2020, 29(5): 524-534. doi: 10.1007/s10646-020-02210-7 [75] GU H X, WANG S X, WANG X H, et al. Nanoplastics impair the intestinal health of the juvenile large yellow croaker Larimichthys crocea [J]. Journal of Hazardous Materials, 2020, 397: 122773. doi: 10.1016/j.jhazmat.2020.122773 [76] BOUR A, HOSSAIN S, TAYLOR M, et al. Synthetic microfiber and microbead exposure and retention time in model aquatic species under different exposure scenarios [J]. Frontiers in Environmental Science, 2020, 8: 83. doi: 10.3389/fenvs.2020.00083 [77] AHRENDT C, PEREZ-VENEGAS D J, URBINA M, et al. Microplastic ingestion cause intestinal lesions in the intertidal fish Girella laevifrons [J]. Marine Pollution Bulletin, 2020, 151: 110795. doi: 10.1016/j.marpolbul.2019.110795 [78] COLE M, LINDEQUE P, FILEMAN E, et al. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus [J]. Environmental Science & Technology, 2015, 49(2): 1130-1137. [79] KAPOSI K L, MOS B, KELAHER B P, et al. Ingestion of microplastic has limited impact on a marine larva [J]. Environmental Science & Technology, 2014, 48(3): 1638-1645. [80] von MOOS N, BURKHARDT-HOLM P, KÖHLER A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure [J]. Environmental Science & Technology, 2012, 46(20): 11327-11335. [81] EOM H J, NAM S E, RHEE J S. Polystyrene microplastics induce mortality through acute cell stress and inhibition of cholinergic activity in a brine shrimp [J]. Molecular & Cellular Toxicology, 2020, 16(3): 233-243. [82] LIU Z Q, YU P, CAI M Q, et al. Effects of microplastics on the innate immunity and intestinal microflora of juvenile Eriocheir sinensis [J]. Science of the Total Environment, 2019, 685: 836-846. doi: 10.1016/j.scitotenv.2019.06.265 [83] QIANG L Y, CHENG J P, MIRZOYAN S, et al. Characterization of microplastic-associated biofilm development along a freshwater-estuarine gradient [J]. Environmental Science & Technology, 2021, 55(24): 16402-16412. [84] NANNINGA G B, SCOTT A, MANICA A. Microplastic ingestion rates are phenotype-dependent in juvenile anemonefish [J]. Environmental Pollution, 2020, 259: 113855. doi: 10.1016/j.envpol.2019.113855 [85] MÜLLER C, ERZINI K, ALEXANDRA TEODÓSIO M, et al. Assessing microplastic uptake and impact on omnivorous juvenile white seabream Diplodus sargus (Linnaeus, 1758) under laboratory conditions [J]. Marine Pollution Bulletin, 2020, 157: 111162. doi: 10.1016/j.marpolbul.2020.111162 [86] WANG X, ZHENG H, ZHAO J, et al. Photodegradation elevated the toxicity of polystyrene microplastics to grouper (Epinephelus moara) through disrupting hepatic lipid homeostasis [J]. Environmental Science & Technology, 2020, 54(10): 6202-6212. [87] QIANG L Y, CHENG J P. Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio) [J]. Ecotoxicology and Environmental Safety, 2019, 176: 226-233. doi: 10.1016/j.ecoenv.2019.03.088 [88] DING J N, HUANG Y J, LIU S J, et al. Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: Are larger plastic particles more harmless? [J]. Journal of Hazardous Materials, 2020, 396: 122693. doi: 10.1016/j.jhazmat.2020.122693 [89] IHEANACHO S C, ODO G E. Dietary exposure to polyvinyl chloride microparticles induced oxidative stress and hepatic damage in Clarias gariepinus (Burchell, 1822) [J]. Environmental Science and Pollution Research, 2020, 27(17): 21159-21173. doi: 10.1007/s11356-020-08611-9 [90] QU H, MA R X, WANG B, et al. Enantiospecific toxicity, distribution and bioaccumulation of chiral antidepressant venlafaxine and its metabolite in loach (Misgurnus anguillicaudatus) co-exposed to microplastic and the drugs [J]. Journal of Hazardous Materials, 2019, 370: 203-211. doi: 10.1016/j.jhazmat.2018.04.041 [91] JAKUBOWSKA M, BIAŁOWĄS M, STANKEVIČIŪTĖ M, et al. Effects of chronic exposure to microplastics of different polymer types on early life stages of sea trout Salmo trutta [J]. Science of the Total Environment, 2020, 740: 139922. doi: 10.1016/j.scitotenv.2020.139922 [92] HUUSKONEN H, SUBIRON I FOLGUERA J, KORTET R, et al. Do whitefish (Coregonus lavaretus) larvae show adaptive variation in the avoidance of microplastic ingestion? [J]. Environmental Pollution, 2020, 262: 114353. doi: 10.1016/j.envpol.2020.114353 [93] QIANG L Y, LO L S H, GAO Y, et al. Parental exposure to polystyrene microplastics at environmentally relevant concentrations has negligible transgenerational effects on zebrafish (Danio rerio) [J]. Ecotoxicology and Environmental Safety, 2020, 206: 111382. doi: 10.1016/j.ecoenv.2020.111382 [94] QIANG L Y, CHENG J P. Exposure to polystyrene microplastics impairs gonads of zebrafish (Danio rerio) [J]. Chemosphere, 2021, 263: 128161. doi: 10.1016/j.chemosphere.2020.128161 [95] NAIDOO T, GLASSOM D. Decreased growth and survival in small juvenile fish, after chronic exposure to environmentally relevant concentrations of microplastic [J]. Marine Pollution Bulletin, 2019, 145: 254-259. doi: 10.1016/j.marpolbul.2019.02.037 [96] BUSSOLARO D, WRIGHT S L, SCHNELL S, et al. Co-exposure to polystyrene plastic beads and polycyclic aromatic hydrocarbon contaminants in fish gill (RTgill-W1) and intestinal (RTgutGC) epithelial cells derived from rainbow trout (Oncorhynchus mykiss) [J]. Environmental Pollution, 2019, 248: 706-714. doi: 10.1016/j.envpol.2019.02.066 [97] SUSSARELLU R, SUQUET M, THOMAS Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2430-2435. doi: 10.1073/pnas.1519019113 [98] CHAE Y, KIM D, CHOI M J, et al. Impact of nano-sized plastic on the nutritional value and gut microbiota of whiteleg shrimp Litopenaeus vannamei via dietary exposure [J]. Environment International, 2019, 130: 104848. doi: 10.1016/j.envint.2019.05.042 [99] 农业部渔业渔政管理局编制. 中国渔业统计年鉴-2017[M]. 北京: 中国农业出版社, 2017. China fishery statistical yearbook[M]. Beijing: China Agriculture Press, 2017(in Chinese).