-
随着社会和经济的发展,国家对水生态环境的保护力度不断增强。截至2020年,全国城镇污水处理能力已达2.3亿m3/d,年化学需氧量(COD)削减约1 500万吨,年氨氮(NH3-N)削减约160万吨[1]。2021年,3 641个国家地表水考核断面中,水质优良(Ⅰ~Ⅲ类)断面比例为89.1%,同比上升4.3个百分点;劣Ⅴ类断面比例为1.0%,同比下降1.2个百分点。主要污染指标为COD、总磷和高锰酸盐指数[2]。
目前,常用的污水处理工艺主要有A2/O(好氧-缺氧-厌氧)工艺、活性污泥法、SBR工艺和A/O工艺等。移动床生物膜反应器(moving bed biofilm reactor,MBBR)工艺结合了活性污泥法和生物膜法的诸多优点,具有填料比表面积大、微生物种类丰富、运转灵活、耐冲击负荷、剩余污泥量少、无需载体回流、减少机器堵塞和无需清洗滤料等优点,与传统方法相比,被认为是最简单高效的污水处理工艺之一[3-5]。
MBBR高效运行的核心是悬浮填料的快速挂膜,为了提高挂膜的速度和质量,研究者开展了深入的探究,目前常用的挂膜方法主要有4种:(1)自然挂膜法:陈洪斌等[6]采用此方法,利用进水中的微生物接种,由于接种量少,生物膜形成速度慢,但是生物膜与填料之间的黏合度高;(2)接种排泥挂膜法:以活性污泥为接种物,克服微生物量少和挂膜速度慢的不足,但是接种污泥与初期生物膜微生物存在营养竞争;(3)流量递增挂膜法:即逐渐增加进水流量到设计流量的方法,加快反应器的启动。傅金祥等[7]以污水处理厂二级处理出水为原水,逐渐增加滤速,缩短了启动时间,完成挂膜;(4)间歇曝气法,GUO et al[8]利用预处理后的石油化工废水,采用此方法挂膜,发现填料表面微生物浓度高,有利于微生物附着,适用于初期难以形成生物膜的废水。
本研究尝试采用接种排泥和间歇性曝气联合挂膜的方法,在有机物浓度较高的进水条件下尝试实现快速挂膜,通过继续提高进水有机负荷,进一步增加生物膜厚度。借助16S rRNA基因高通量测序对不同尺寸填料上的生物膜进行菌群结构分析,探究不同尺寸填料的挂膜特征与差异,并以投加不同尺寸填料的MBBR对校园内景观池塘的实际水进行净化处置,对比处理效率差异。
MBBR填料快速挂膜的菌群特征与校园景观池水净化试验
Bacterial diversity in rapid biofilm culturing of MBBR fillers and campus landscape pond water purification
-
摘要: 采用接种排泥和间歇性曝气联合进行MBBR挂膜,并探究不同尺寸、不同填充率对填料生物挂膜、微生物群落结构和污染物去除效率的影响。采用联合法挂膜培养,兼顾两者优点,可以在15 d实现挂膜,附着的生物膜对有机负荷和污染波动具有较好耐受性,对污染物的去除效果较好。16S rRNA基因高通量测序结果显示,不同尺寸填料上生物膜中的优势菌均为Candidatus Saccharibacteria,占比均超过40%。以分别投放有两种尺寸的挂膜填料的MBBR处理校园景观池水,填充率为30%的小填料具有更高的污染物去除能力,8 h后出水水质可达到地表水Ⅳ类水质标准。
-
关键词:
- MBBR /
- 填料挂膜 /
- 菌群结构 /
- Candidatus Saccharibacteria /
- 水体净化
Abstract: The combination of inoculation sludge discharge and intermittent aeration was used for MBBR biofilm culturing, and the effects of different sizes and filling rates on biofilm culturing, microbial community and pollutants removal efficiency were investigated. The biofilm could form in 15 d with the combined method, which showed the advantages of the two methods. The attached biofilm had a good tolerance to organic load and pollution fluctuation with a high pollutant removal efficiency. The 16S rRNA gene MiSeq result indicated that the dominant bacteria in biofilms with different sizes of fillers were Candidatus Saccharibacteria, accounting for more than 40%. The campus landscape pool water was treated by MBBR with two sizes fillers with biofilm, respectively. The smaller fillers with a filling rate of 30% had a higher pollutant removal efficiency, and the effluent could meet the Class IV Water Standard of surface water within an 8 h treatment. -
表 1 采用不同挂膜方法所需的挂膜时间
Table 1. Time for biofilm culturing of different methods
表 2 样品微生物多样性指数统计
Table 2. Microbial diversity indexes
填料 ACE OTUs Chao1 Shannon Simpson 覆盖度/% R1 455.80 453 457.58 3.79 0.12 99.98 R2 437.35 417 447.00 3.87 0.08 99.91 -
[1] 国家发展改革委. 国家发展改革委有关负责同志就《“十四五”城镇污水处理及资源化利用发展规划》答记者问[EB/OL].https://www.ndrc.gov.cn/xxgk/jd/jd/202106/t20210615_1283251.html?code=&state=123,2021-06-17. [2] 生态环境部. 生态环境部通报11月和1~11月全国地表水、环境空气质量状况[EB/OL]. https://www.mee.gov.cn/ywdt/xwfb/202112/t20211221_964784.shtml,2021-12-21. [3] 张鹏, 袁辉洲, 柯水洲. MBBR法处理城市污水去除污染物的特性研究[J]. 水处理技术, 2009, 35(10): 91 − 96. doi: 10.16796/j.cnki.1000-3770.2009.10.022 [4] 施宇震, 刘月, 施永生, 等. 移动床生物膜反应器(MBBR)工艺的填料填充率中试研究[J]. 中国水运:下半月, 2019, 19(6): 90 − 92. [5] 张新波, 张祖敏, 宋姿, 等. 不同生物膜载体下MBBR中微生物群落变化特征[J]. 中国给水排水, 2019, 35(11): 63 − 68. doi: 10.19853/j.zgjsps.1000-4602.2019.11.012 [6] 陈洪斌, 梅翔, 高廷耀, 等. 受污染源水生物预处理挂膜过程研究[J]. 水处理技术, 2001, 27(4): 196 − 199. doi: 10.3969/j.issn.1000-3770.2001.04.003 [7] 傅金祥, 许海良, 陈正清. 不同原水条件下曝气生物滤池的挂膜启动[J]. 中国给水排水, 2006, 22(11): 90 − 92. doi: 10.3321/j.issn:1000-4602.2006.11.023 [8] GUO J, FANG M, CHANG C, et al. Start-up of a two-stage bioaugmented anoxic-oxic (A/O) biofilm process treating petrochemical wastewater under different DO concentrations[J]. Bioresource Technology, 2009, 99: 3483 − 3488. [9] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [10] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996 − 998. doi: 10.1038/nmeth.2604 [11] GU Y, WEI Y, XIANG Q, et al. C: N ratio shaped both taxonomic and functional structure of microbial communities in livestock andpoultry breeding wastewater treatment reactor[J]. Science of the Total Environment, 2019, 651: 625 − 633. doi: 10.1016/j.scitotenv.2018.09.234 [12] 王伟, 赵中原, 张鑫, 等. 不同外碳源对尾水极限脱氮性能及微生物群落结构的影响[J]. 环境科学, 2022, 43(9): 4717 − 4726. doi: 10.13227/j.hjkx.202112238 [13] WANG X, WANG W, ZHANG J, et al. Dominance of Candidatus saccharibacteria in SBRs achieving partial denitrification: effects of sludge acclimating methods on microbial communities and nitrite accumulation[J]. RSC Advances, 2019, 9(20): 11263 − 11271. doi: 10.1039/C8RA09518C [14] 邢金良, 张岩, 陈昌明, 等. CEM-UF组合膜-硝化/反硝化系统处理低C/N废水及种群结构分析[J]. 环境科学, 2018, 39(3): 1342 − 1349. [15] TOMONORI K, SHIRO Y, RYOHEI U, et al. Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge[J]. Fems Microbiology Ecology, 2016, 92(6): 1 − 6. [16] ZHANG M, GAO J, LIU Q, et al. Nitrite accumulation and microbial behavior by seeding denitrifying phosphorus removal sludge for partial denitrification (PD): The effect of COD/NO3- ratio[J]. Bioresource Technology, 2020, 323(4): 124524. [17] 周洪玉, 韩梅琳, 仇天雷, 等. 不同生物过滤系统铵态氮转化速率及生物膜特性分析[J]. 环境科学, 2017, 38(6): 2444 − 2452. doi: 10.13227/j.hjkx.201610142 [18] 李建婷, 纪树兰, 刘志培, 等. 16S rDNA克隆文库方法分析好氧颗粒污泥细菌组成[J]. 环境科学研究, 2009, 22(10): 1218 − 1223. [19] 陈翰. 进水有机物浓度对好氧颗粒污泥形成的影响机制[D]. 哈尔滨: 哈尔滨工业大学, 2019. [20] 聂泽兵, 边德军, 吴忌, 等. 海绵填料尺寸对序批式生物膜系统影响实验研究[J]. 水处理技术, 2018, 44(9): 99 − 103. doi: 10.16796/j.cnki.1000-3770.2018.09.022 [21] 白杨. 填料尺寸及比例对SBBR分散生活污水处理效果研究[D]. 兰州: 兰州交通大学, 2021.