-
近几十年来,快速的城市化和工业化发展导致中国大气颗粒物污染恶化[1],尤其是细颗粒物(PM2.5)已成为国内城市的首要污染物[2]。PM2.5粒径小,吸附有害污染物能力强,组分复杂,容易进入到人体肺泡组织中,进而导致心血管系统、呼吸系统疾病[3]。多环芳烃(PAHs)是一类吸附在PM2.5上的有毒有机物,具有难降解、半挥发性的特点,可随着颗粒物迁移扩散造成持久性的大气污染。研究表明,肺癌与人体吸入的PAHs密切相关[4],孕妇长期暴露在PAHs污染环境下,会导致胎儿发育迟缓、畸形、早产等严重后果[5-6]。因此,美国环境保护局(US EPA)和欧盟已将16种PAHs列为优先控制污染物。
中国是世界上PAHs排放量较高的国家,2007年PAHs的排放量占全球排放量的21%[7]。目前,学者已对国内城市颗粒物中PAHs的季节变化、来源和健康风险进行了大量研究[8-10],但这些研究主要集中京津冀、长三角地区及省会城市,对级别较低高原城市的研究鲜有报道。遵义市地处云贵高原向湖南丘陵和四川盆地过渡的斜坡地带,是西南地区重要交通枢纽,也是贵州省工业分布主要区域,境内煤炭资源丰富。截至2019年末,遵义市常住人口630.2万人,机动车保有量133.3万辆[11]。随着城市化进程加快及新蒲新区建设,遵义市也面临着较严峻的大气污染问题。但目前对遵义市颗粒物的研究较少,对颗粒物中PAHs污染特征的研究尚未报道,而秋、冬季为遵义市大气颗粒物污染最严重的季节[12],掌握该阶段污染情况对全年大气污染的改善具有重要意义。因此,本研究通过采集遵义市秋、冬季(2020年10月~2021年1月)PM2.5样品,分析样品中PAHs的污染特征、来源及对人体健康风险,以期为遵义市大气污染控制和治理提供科学依据。
遵义市秋冬季PM2.5中多环芳烃的污染特征、来源及健康风险评价
Characteristics, sources and health risk assessment of PAHs in PM2.5 during autumn and winter in Zunyi
-
摘要: 为探究遵义市秋、冬季PM2.5中多环芳烃(PAHs)的污染特征及来源,于2020年10月~2021年1月采集了遵义市大连路、忠庄和新蒲3个采样点位PM2.5样品,利用GC-MS对样品中16种优控PAHs进行分析,利用特征比值法和多元统计法(PCA-MLR)解析其来源,并采用BaP毒性当量浓度和终生致癌风险模型(ILCR)探讨了PAHs对人体的健康风险。结果表明,研究期间遵义市PM2.5中16种PAHs浓度范围为9.68~108.80 ng/m3,平均值为(30.53±22.63) ng/m3,呈冬季高、秋季低的季节变化趋势。秋、冬季PM2.5中PAHs环数分布特征一致,高环(5~6环)>中环(4环)>低环(2~3环),以中环、高环PAHs为主。PCA-MLR分析表明PAHs主要来自燃煤和生物质燃烧混合源、机动车尾气,其中,燃煤和生物质燃烧对颗粒物中PAHs的来源贡献最大,秋季为50.6%,冬季为54.8%。遵义市冬季PAHs总毒性当量浓度(TEQ)高于秋季,ILCR结果表明,成年人的ILCR值高于10-6,表明有潜在的致癌风险。Abstract: To investigate the pollution characteristics and sources of PAHs in PM2.5 in Zunyi during autumn and winter, PM2.5 samples were collected at Dalian Road, Zhongzhuang and Xinpu from October 2020 to January 2021. Then the concentrations of the 16 PAHs (US EPA priority) were analyzed by using gas chromatography mass spectrometer (GC-MS). Diagnostic ratios and principal component analysis-multiple linear regression (PCA-MLR) were performed for the 16 PAHs sources apportionment, and equivalent carcinogenic concentration of BaP and incremental lifetime cancer risks (ILCR) were applied to assess the health risk. The results showed that the concentrations of the 16 PAHs ranged from 9.68 to 108.80 ng/m3,with an average of 30.53±22.63 ng/m3 during the study period. The PAHs concentrations exhibited an obvious seasonal variation, with a higher level in winter than in autumn. The percentages of PAHs with different rings were in the following order, 5~6 ring PAHs >4 ring PAHs > 2~3 ring PAHs, 5~6 ring and 4 ring PAHs mainly occurred during autumn and winter. PCA-MLR indicated that PAHs were mainly derived from the emissions of coal combustion, biomass burning and motor vehicle. Coal combustion and biomass burning were the main pollution sources of PAHs in particulate matter, with 50.6% in autumn and 54.8% in winter. The TEQ in Zunyi was higher in winter than in autumn. The results from the risk model showed that the ILCR of adults exceeded 10−6, indicating the potential cancer risk of PAHs.
-
Key words:
- Zunyi /
- PAHs /
- PM2.5 /
- pollution characteristics /
- risk assessment
-
表 1 不同年龄段人群暴露参数值
Table 1. Exposure parameters value of different age groups
参数 儿童 青少年 成年人 CSF/d 3.14 3.14 3.14 IR/m3.d−1 12 15.7 15.7 EF/d.a−1 350 350 350 ED/a 6 6 42 BW/kg 31.1 53.3 62.9 AT/d 25 500 25 500 25 500 表 2 研究期间遵义市PM2.5中PAHs质量浓度
Table 2. Concentrations of PAHs in PM2.5 in Zunyi during the study period
ng·m−3 组分 新蒲(n=48) 大连路(n=48) 忠庄(n=48) 最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值 萘(Nap) 0.32 1.99 0.61±0.36 0.23 1.38 0.73±0.25 0.40 10.95 1.79±1.99 苊烯(Acy) 0.42 0.99 0.54±0.14 0.41 1.36 0.61±0.16 0.49 2.68 0.96±0.53 苊(Ace) 0.45 1.20 0.55±0.13 0.44 0.76 0.58±0.07 0.54 1.21 0.74±0.19 芴 (Flu) 0.49 1.21 0.62±0.16 0.48 1.31 0.69±0.21 0.56 7.68 1.22±1.36 菲(Phe) 0.75 3.31 1.25±0.67 0.75 3.85 1.51±0.79 0.92 30.79 3.67±4.24 蒽(Ant) 0.43 1.49 0.67±0.27 0.42 1.42 0.75±0.25 0.62 3.84 1.21±0.68 荧蒽(Fla) 0.81 4.72 1.94±1.05 1.02 7.36 2.35±1.57 1.21 16.95 4.65±3.75 芘(Pyr) 0.78 3.60 1.50±0.69 0.88 6.11 1.93±1.21 0.96 10.51 3.29±2.16 苯并(a)蒽(BaA) 0.50 2.33 0.92±0.51 0.48 8.93 1.77±1.97 0.77 7.79 2.64±1.65 屈(Chry) 0.51 6.59 1.71±1.53 0.47 18.77 3.56±4.28 1.26 16.58 6.13±4.13 苯并(b)荧(BbF) 0.67 7.64 2.36±1.83 0.69 17.51 4.42±3.9 1.42 14.57 5.63±3.22 苯并(k)荧(BkF) 0.47 2.06 0.84±0.41 0.48 4.92 1.33±0.99 0.80 3.94 1.66±0.78 苯并(a)芘(BaP) 0.93 3.49 1.47±0.60 1.08 10.91 2.66±2.23 1.06 8.51 2.97±1.81 茚并(1,2,3-cd)芘 (InP) 0.50 4.95 1.50±1.08 0.50 11.36 2.70±2.44 1.14 9.23 3.52±2.04 二苯并(a,h)蒽(DBA) 0.49 1.36 0.70±0.22 0.49 2.88 0.90±0.48 0.63 2.57 1.17±0.48 苯并(ghi)苝 (BghiP) 0.50 4.07 1.26±0.82 0.53 10.16 2.35±2.15 1.11 8.46 3.09±1.87 ∑ 16PAHs 10.01 47.33 18.43±9.62 9.68 104.19 28.86±22.20 15.73 108.80 44.32±23.64 表 3 遵义市秋、冬季PM2.5中PAHs的PCA-MLR分析
Table 3. PCA-MLR for PAHs in PM2.5 in Zunyi during autumn and winter
化学物质 秋季 冬季 因子1 因子2 因子1 因子2 Nap 0.961 0.195 −0.665 0.981 Acy 0.544 0.307 0.183 0.605 Ace 0.947 0.219 0.21 0.658 Flu 0.929 0.343 −0.033 0.969 Phe 0.884 0.412 −0.035 0.965 Ant 0.360 0.208 0.169 0.456 Fla 0.800 0.447 0.457 0.829 Pyr 0.811 0.534 0.617 0.690 BaA 0.518 0.827 0.961 0.167 Chry 0.807 0.564 0.388 0.903 BbF 0.849 0.475 0.506 0.901 BkF 0.299 0.948 0.990 0.122 BaP 0.453 0.869 0.879 0.212 InP 0.286 0.949 0.993 0.060 DBA 0.538 0.820 0.973 0.116 BghiP 0.245 0.962 0.991 0.090 贡献方差 78.400 17.400 60.600 31.700 贡献率/% 50.600 49.400 45.200 54.800 来源 煤炭、生
物质燃烧机动车
尾气机动车
尾气煤炭、生
物质燃烧表 4 遵义市PM2.5中PAHs的毒性当量
Table 4. TEQ of PAHs in PM2.5 in Zunyi
ng·m−3 组分 TEF[15] 秋季 冬季 新蒲 大连 忠庄 新蒲 大连路 忠庄 Nap 0.001 0.000 4 0.000 6 0.001 5 0.000 8 0.000 8 0.002 1 Acy 0.001 0.000 5 0.000 5 0.000 9 0.000 6 0.000 7 0.001 0 Ace 0.001 0.000 5 0.000 5 0.000 8 0.000 6 0.000 6 0.000 7 Flu 0.001 0.000 5 0.000 6 0.000 9 0.000 7 0.000 8 0.001 6 Phe 0.001 0.000 8 0.001 1 0.002 4 0.001 7 0.001 9 0.005 2 Ant 0.010 0.004 9 0.006 1 0.011 2 0.008 5 0.009 0 0.013 1 Fla 0.001 0.001 3 0.001 5 0.003 7 0.002 6 0.003 1 0.005 8 Pyr 0.001 0.001 2 0.001 4 0.002 7 0.001 8 0.002 4 0.004 0 BaA 0.100 0.056 4 0.079 3 0.262 3 0.128 0 0.271 0 0.266 1 Chry 0.010 0.007 1 0.013 3 0.058 3 0.027 0 0.057 1 0.065 0 BbF 0.100 0.102 5 0.220 8 0.474 2 0.369 2 0.655 0 0.670 2 BkF 0.100 0.054 9 0.081 7 0.146 4 0.113 8 0.183 1 0.190 6 BaP 1.000 1.209 9 1.838 0 2.605 4 1.724 4 3.448 7 3.418 5 InP 0.100 0.070 9 0.131 5 0.305 0 0.228 6 0.402 5 0.408 8 DBA 1.000 0.552 2 0.694 4 1.086 0 0.853 1 1.096 6 1.279 3 BghiP 0.010 0.007 0 0.012 5 0.026 6 0.018 3 0.034 0 0.036 1 TEQ − 2.070 7 3.083 9 4.988 2 3.479 7 6.167 3 6.368 0 注:TEF为 PAHs单体的毒性等效因子。 -
[1] ZHANG X, ZHAO X, JI G, et al. Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China[J]. Journal of Atmospheric Chemistry, 2019, 76(1): 73 − 88. doi: 10.1007/s10874-019-09388-z [2] LI Z Y, WANG Y T, LI Z X, et al. Levels and sources of PM2.5–associated PAHs during and after the wheat harvest in a central rural area of the Beijing-Tianjin-Hebei (BTH) region[J]. Aerosol and Air Quality Research, 2020, 20(5): 1070 − 1082. doi: 10.4209/aaqr.2020.03.0083 [3] ZHANG X H, LU Y, WANG Q G, et al. A high-resolution inventory of air pollutant emissions from crop residue burning in China[J]. Atmospheric Environment, 2019, 213: 207 − 214. doi: 10.1016/j.atmosenv.2019.06.009 [4] ZHOU M, WANG H, ZHU J, et al. Cause-specific mortality for 240 causes in China during 1990-2013: A systematic subnational analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2016, 387(10015): 251 − 272. doi: 10.1016/S0140-6736(15)00551-6 [5] PETRY T, SCHMID P, SCHLATTER C. The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs)[J]. Chemosphere, 1996, 32(4): 639 − 648. doi: 10.1016/0045-6535(95)00348-7 [6] BOLDEN A L, ROCHESTER J R, SCHULTZ K, et al. Polycyclic aromatic hydrocarbons and female reproductive health: A scoping review[J]. Reproductive Toxicology, 2017, 73: 61 − 74. doi: 10.1016/j.reprotox.2017.07.012 [7] SHEN H, HUANG Y, WANG R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environmental Science & Technology, 2013, 47(12): 6415 − 6424. [8] YAN D H, WU S H, ZHOU S L, et al. Characteristics, sources and health risk assessment of airborne particulate PAHs in Chinese cities: A review[J]. Environmental Pollution, 2019, 248: 804 − 814. doi: 10.1016/j.envpol.2019.02.068 [9] LIU Y, YU Y, LIU M, et al. Characterization and source identification of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in different seasons from Shanghai, China[J]. The Science of the Total Environment, 2018, 644(10): 725 − 735. [10] ZHANG T C, CHEN Y F, XU X H. Health risk assessment of PM2.5-bound components in Beijing, China during 2013-2015[J]. Aerosol and Air Quality Research, 2020, 20: 1938 − 1949. doi: 10.4209/aaqr.2020.03.0108 [11] 贵州省统计局, 国家统计局贵州调查总队. 贵州统计年鉴2020[M]. 北京: 中国统计出版社, 2020. [12] 张勇, 陈荣祥, 陈卓, 等. 遵义市PM2.5中水溶性离子的污染特征及来源解析[J]. 地球与环境, 2020, 48(5): 552 − 557. [13] LIU X H, LIU Y, LU S Y, et al. Occurrence of typical antibiotics and source analysis based on PCA-MLR model in the East Dongting Lake, China[J]. Ecotoxicology and Environmental Safety, 2018, 163: 145 − 152. doi: 10.1016/j.ecoenv.2018.07.067 [14] JUNG K H, YAN B Z, CHILLRUD S N, et al. Assessment of benzo(a) pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York city[J]. International Journal of Environmental Research and Public Health, 2010, 7(5): 1889 − 1900. doi: 10.3390/ijerph7051889 [15] 李宽, 周家斌, 袁畅, 等. 武汉市大气PM2.5中多环芳烃的分布特征及来源[J]. 环境科学研究, 2018, 31(4): 648 − 656. [16] 李 娜, 魏 鑫, 周宇峰, 等. 长春市大气环境PM2.5中多环芳烃的来源解析及健康风险评价[J]. 科学技术与工程, 2021, 21(1): 410 − 416. [17] MA Y, CHENG Y, QIU X, et al. A quantitative assessment of source contributions to fine particulate matter (PM2.5)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong Kong[J]. Environmental Pollution, 2016, 219: 742 − 749. doi: 10.1016/j.envpol.2016.07.034 [18] WANG Q, LIU M, YU Y P, et al. Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai City, China[J]. Environmental Pollution, 2016, 218: 118 − 128. doi: 10.1016/j.envpol.2016.08.037 [19] TIAN F L, CHEN J W, QIAO X L, et al. Sources and seasonal variation of atmospheric polycyclic aromatic hydrocarbons in Dalian, China: Factor analysis with non-negative constraints combined with local source fingerprints[J]. Atmospheric Environment, 2009, 43(17): 2747 − 2753. doi: 10.1016/j.atmosenv.2009.02.037 [20] HE J B, FAN S X, MENG Q Z, et al. Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: distributions, sources and meteorological influences[J]. Atmospheric Environment, 2014, 89: 207 − 215. doi: 10.1016/j.atmosenv.2014.02.042 [21] 齐文静, 张瑞芹, 姜楠, 等. 洛阳市秋、冬季 PM2.5中多环芳烃的污染特征、来源解析及健康风险评价[J]. 环境科学, 2021, 42(2): 595 − 603. [22] LI J W, LI X D, LI M, et al. Influence of air pollution control devices on the polycyclic aromatic hydrocarbon distribution in flue gas from an ultralow-emission coal-fired power plant[J]. Energy&Fuels, 2016, 30(11): 9572 − 9579. [23] BRAGATO M, JOSHI K, CARLSON J B, et al. Combustion of coal, bagasse and blends thereof: part Ⅱ: speciation of PAH emissions[J]. Fuel, 2012, 96: 51 − 58. doi: 10.1016/j.fuel.2011.11.069 [24] GAO Y, JI H B. Characteristics of polycyclic aromatic hydrocarbons components in fine particle during heavy polluting phase of each season in urban Beijing[J]. Chemosphere, 2018, 212: 346 − 357. doi: 10.1016/j.chemosphere.2018.08.079 [25] REN Y Q, ZHOU B H, TAO J, et al. Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities[J]. Atmospheric Research, 2017, 183: 322 − 330. doi: 10.1016/j.atmosres.2016.09.015 [26] MANCILL Y, MENDOZA A, FRASER M P, et al. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers[J]. Atmospheric Chemistry and Physics, 2016, 16(2): 953 − 970. doi: 10.5194/acp-16-953-2016 [27] DE L TORRE-ROCHE R J, LEE W Y, CAMPOS-DIAZ S I. Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region[J]. Journal of Hazardous Materials, 2009, 163(2-3): 946 − 958. doi: 10.1016/j.jhazmat.2008.07.089 [28] MVILLAR M, LERTXUND M A, MARTINEZ L, et al. Air polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5 in a North Cantabric coast urban environment[J]. Chemosphere, 2014, 99: 233 − 238. doi: 10.1016/j.chemosphere.2013.11.006 [29] RAJPUT P, SARIN M M, SHARMA D, et al. Atmospheric polycyclic aromatic hydrocarbons and isomer ratios as tracers of biomass burning emissions in northern India[J]. Environmental Science and Pollution Research International, 2014, 21(8): 5724 − 5729. doi: 10.1007/s11356-014-2496-5 [30] BOUROTTE C, FORTI M, TANIGUCHI S, et al. A wintertime study of PAHs in fine and coarse aerosols in Sao Paulo City, Brazil[J]. Atmospheric Environment, 2005, 39(21): 3799 − 3811. doi: 10.1016/j.atmosenv.2005.02.054 [31] KHAN M F, LATIF M T, LIM C H, et al. Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5[J]. Atmospheric Environment, 2015, 106: 178 − 190. doi: 10.1016/j.atmosenv.2015.01.077 [32] 宋光卫, 胡健, 崔猛, 等. 北京市奥林匹克公园PM2.5中多环芳烃在采暖季和非采暖季的特征、来源及健康风险评估[J]. 生态学杂志, 2019, 38(11): 3400 − 3407. [33] MA Y, LIU A, EGODAWATTA P, et al. Quantitative assessment of human health risk posed by polycyclic aromatic hydrocarbons in urban road dust[J]. Science of the Total Environment, 2017, 575: 895 − 904. doi: 10.1016/j.scitotenv.2016.09.148