-
农药在农产品生产,以及林业、草原和卫生害虫防控等方面发挥着重要作用。根据中国农药工业协会数据显示,截至2019年底,我国农药生产企业约1 800家,农药产量151.6×104 t,其中杀虫剂农药占比42.2%,而杀虫剂75%以上为有机磷类农药 (organophosphorus pesticides, OPPs) 。OPPs多为油状液体、微溶于水、难以自然降解,且50%以上OPPs为高毒品种,对人体具有不同程度的致癌性[1]。在农药开发和生产等活动过程中如发生泄漏,会对土壤和地下水造成长期、潜在的危害。当前甲胺磷、对硫磷等毒性较高的OPPs已被农业农村部列入禁限农药[2-3]。
近年来,OPPs在流域水体、土壤、生物体等环境介质中均有不同程度检出[4-5],因其在环境中的持久性、生物累积性及毒性,具有较强生态风险。研究证实OPPs可能会导致神经发育障碍、生殖功能降低以及胎儿出生体重降低等人体危害[6] 。
目前,有关OPPs的研究多集中在表层土壤,对地层剖面污染分布及空间污染羽研究相对较少 [7-13]。不同剖面地层岩性存在不均质性,对OPPs污染物的缓冲、净化作用存在差异。表层土壤岩性单一,不能准确刻画污染物在地层剖面的空间分布特征,影响后续风险评估及治理修复,导致污染治理不完全或过度治理。
本研究以农药生产场地4种OPPs为目标污染物,按照污染质量分数分类,将污染羽划分为质量分数高值和质量分数低值,以确定污染源位置。采用三维空间插值方法,将OPPs污染羽按地层岩性划分,分析不同岩性中OPPs的分布及扩散规律,以为污染源识别和修复治理提供依据。
有机磷农药生产场地污染分布特征分析
Analysis on Distribution Characteristics of Soil Organophosphorus Pesticides (OPPs) in The Production Site
-
摘要: 针对有机磷农药 (OPPs) 生产场地存在污染的环境问题,以某农药生产企业污染地块为研究对象,分析了OPPs在土层中的空间分布和扩散规律。通过三维空间插值表征4种OPPs (甲拌磷、乙硫磷、对硫磷、特丁硫磷) 的污染分布。结果表明,土壤中甲拌磷、乙硫磷、对硫磷、特丁硫磷平均质量分数分别为697、356、19 102、63 mg·kg−1。根据《EPA 区域筛选值》 (RSL-2017) 标准,4种OPPs质量分数均超标10倍以上。随着深度增加,4种OPPs呈现为先减小后增加再减少的趋势,与地层渗透系数变化规律一致。根据插值结果,污染羽面积大小排序为甲拌磷>特丁硫磷>乙硫磷>对硫磷,说明甲拌磷在土壤中的迁移能力最强。同一种OPPs质量分数在表层 (0~3 m) 与深层 (>3 m) 土壤中分布规律相似,局部出现质量分数高值 (超标>10倍) 。OPPs质量分数高值在土层阻隔和吸附作用下出现降低趋势。本研究结果可为农药污染地块调查及修复工程提供参考。Abstract: Aiming at the environmental problem of organophosphorus pesticides (Opps) in the production site, the spatial distribution and diffusion of Opps in the soil layer were analyzed by taking the contaminated site of a pesticide production enterprise as the research object. In this study, the three-dimensional spatial interpolation was used to characterize the pollution distribution of four Opps (phorate, ethiophos, parathion and terbuthion) in soil of a pesticide production site. The average concentrations of phorate, ethiophos, parathion and terbuthion were 697, 356, 19 102 and 63 mg·kg−1, respectively. According to the standard content of EPA Regional Screening Value (RSL-2017), the concentrations of four Opps exceeded the standard values by a factor of > 10. As depth increases, four Opps exhibited a similar trend which first increased, and then decreased and again increased. Such variation was consistent with the permeability coefficient. The rank of pollution plume area was phorate > terbuthion > ethiophos > parathion, which indicated that the migration ability of phorate was the strongest in soil. The distribution trend of Opps concentration was similar in both surface layer (0~3 m) and deep layer (> 3 m) of soil with local high-concentration values (more than 10 times above the standard values). The concentration of high-concentrations Opps decreased under the action of soil barrier and adsorption. Results from the study could provide a scientific basic for the remediation of pesticides in the contaminated sites.
-
表 1 农药污染地块不同土层特征参数
Table 1. Characteristic parameters in different soil layers of the pesticide-contaminated site
分层 岩性 孔隙比 天然含水率/% 有机质/% 垂向渗透系数/(cm·s−1) 水平渗透系数/(cm·s−1) 第1层 填土层 1.06 36.3 6 4.98×10-7 5.57×10-7 第2层 粉土① 0.8 25.1 4.2 2.50×10-6 2.00×10-6 第3层 粉质黏土① 0.9 30.95 6.35 1.10×10-8 3.90×10-7 第4层 粉土② 0.8 25.8 2.5 6.60×10-6 8.50×10-6 第5层 粉质黏土② 1 34.8 6.6 7.20×10-8 9.50×10-8 第6层 粉土③ 0.8 26.4 3.1 4.40×10-6 1.80×10-6 第7层 粉质黏土③ 0.75 26.45 4.55 1.00×10-8 4.70×10-8 表 2 OPPs污染物性质
Table 2. Properties of Organophosphorus Pesticide Pollutants
污染物 分子式 蒸气压/
Pa水中溶解度/
(mg·L−1)分配系数 甲拌磷 C7H17O2PS3 0.173 50 2.33×103 乙硫磷 C9H22O4P2S4 2×10-4 2 5.57×104 对硫磷 C10H14NO5PS 2.3×10-3 11 5.38×103 特丁硫磷 C9H21O2PS3 3.95 5.07 1.57×104 表 3 土壤中OPPs检测结果描述性统计
Table 3. Descriptive statistics of OPPs content in soil
污染物 EPA筛选值/
(mg·kg−1)质量分数/ (mg·kg−1) 超标率/% 最大值 平均值 中值 甲拌磷 13 25 300 697 18.6 26.24 乙硫磷 32 8 873 356 5.7 16.83 对硫磷 380 193 000 19 102 0.1 5.45 特丁硫磷 2 563 63 0.1 15.35 -
[1] 国研智库、《中国发展观察》杂志社联合课题组. 我国农药行业存在的主要问题及相关政策建议[J]. 中国发展观察, 2021(5): 51-52+58. doi: 10.3969/j.issn.1673-033X.2021.05.018 [2] 包一翔, 苏琛, 陈君, 等. 禁限用有机磷农药持久性、生物累积性和毒性评估[J]. 现代农药, 2021, 20(3): 33-38. doi: 10.3969/j.issn.1671-5284.2021.03.008 [3] 何小玲, 聂艳, 王念, 等. 有机磷农药污染现状与防治对策[J]. 环境生态学, 2021, 3(10): 38-43. [4] 刘帆, 孔昊玥, 刘红玲. 基于权重敏感度分布研究太湖有机磷农药单一和复合风险[J]. 生态毒理学报, 2020, 15(2): 130-140. doi: 10.7524/AJE.1673-5897.20190521003 [5] RASHID S, RASHID W, TULCAN R, et al. Use, exposure, and environmental impacts of pesticides in Pakistan: a critical review[J]. Environmental science and pollution research international, 2022, 29(29): 1-15. [6] CEQUIER E, SAKHIi A K, HAUG L S, et al. Exposure to organophosphorus pesticides in Norwegian mothers and their children: Diurnal variability in concentrations of their biomarkers and associations with food consumption[J]. Science of the Total Environment, 2017, 590(15): 655-662. [7] 朱国繁, 应蓉蓉, 叶茂, 等. 我国农药生产场地污染土壤修复技术研究进展[J]. 土壤通报, 2021, 52(2): 462-473. doi: 10.19336/j.cnki.trtb.2020073102 [8] JAYARAJ R, MEGHA P, SREEDEV P. Review Article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment[J]. Interdisciplinary Toxicology, 2016, 9(3-4): 90-100. doi: 10.1515/intox-2016-0012 [9] 马文洁, 何江涛, 金爱芳, 等. 北京市郊再生水灌区土壤有机氯农药垂向分布特征[J]. 生态环境学报, 2010, 19(7): 1675-1681. doi: 10.3969/j.issn.1674-5906.2010.07.028 [10] 翟美静, 叶雅丽. 化工污染场地土壤污染特征及修复方案分析[J]. 化工管理, 2021(32): 48-49. doi: 10.19900/j.cnki.ISSN1008-4800.2021.32.022 [11] 魏语宁, 刘春光, 付海燕, 等. 有机磷类农药微生物修复研究进展[J]. 中国农学通报, 2022, 38(12): 131-137. doi: 10.11924/j.issn.1000-6850.casb2021-0548 [12] AKASH S, SIVAPRAKASH B, RAJAMOHAN N, et al. Pesticide pollutants in the environment-A critical review on remediation techniques, mechanism and toxicological impact[J]. Chemosphere, 2022, 301: 134754. doi: 10.1016/j.chemosphere.2022.134754 [13] LIU L, BAI L P, MAN C G, et al. DDT vertical migration and formation of accumulation layer in pesticide-producing sites[J]. Environmental Science & Technology, 2015, 49(15): 9084-9091. [14] 贾琳, 夏天翔, 张丽娜, 等. 基于不同空间插值的污染场地土壤锑修复范围预测研究[J]. 土壤, 2022, 54(3): 1-10. [15] 郭甲腾, 代欣位, 刘善军, 等. 一种三维地质体模型的隐式剖切方法[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1766-1773. [16] 生态环境部. 建设用地土壤污染状况调查技术导则: HJ 25.1-2019[S]. 北京: 中国环境出版集团, 2019. [17] EPA. Method 8270D semivolatile organic compounds by gas chromatography/mass spectrometry. [EB/OL].(2014-07)[2022-7-4].https://19january2017snapshot.epa.gov/sites/production/files/2015-12/documents/8270d.pdf [18] EPA. Regional screening levels (RSLs): USA. RSL-2017[S]. EPA, 2017. [19] 张春玲, 杨晓文, 谷中鸣, 等. 农药生产企业废弃场地浅层土壤污染情况调查[J]. 农药, 2014, 53(6): 460-462. doi: 10.16820/j.cnki.1006-0413.2014.06.022 [20] 丁浩东, 万红友, 秦攀, 等. 环境中有机磷农药污染状况、来源及风险评价[J]. 环境化学, 2019, 38(3): 463-479. doi: 10.7524/j.issn.0254-6108.2018051405 [21] MARICAN A, DURAN-LARA E F. A review on pesticide removal through different processes.[J]. Environmental science and pollution research international, 2018, 25(3): 2051-2064. doi: 10.1007/s11356-017-0796-2 [22] 陈锐. 基于建设用地土壤调查分析历史农用地农药潜在污染特征[J]. 环保科技, 2020, 26(6): 57-64. doi: 10.3969/j.issn.1674-0254.2020.06.012 [23] 刘艳茹. 某在产农药厂土壤污染调查与阿特拉津分布特征及风险评估研究[D]. 山东大学, 2021. [24] 周艳, 姜登登, 孔令雅, 等. 典型农药污染场地地下水中苯系物监控自然衰减研究[J]. 环境科学学报, 2022, 42(7): 380-388. [25] 王艳. 不同有机物料对有机磷农药污染土壤酶活性及土壤微生物量的影响[J]. 生态环境学报, 2014(7): 1205-1209. doi: 10.3969/j.issn.1674-5906.2014.07.018 [26] 张涛, 蔡五田, 刘雪松, 等. 某农药厂废弃场地土壤中甲拌磷垂向分布特征[J]. 地球与环境, 2015, 43(4): 445-450. doi: 10.14050/j.cnki.1672-9250.2015.04.010 [27] LV H, SU X S, WANG Y, et al. Effectiveness and mechanism of natural attenuation at a petroleum hydrocarbon contaminated site[J]. Chemosphere, 2018, 206: 293-301. [28] 王迎菲, 张莹, 赵梓彤, 等. 环境中残余农药降解行为的研究[J]. 云南化工, 2020, 47(8): 34-36+40. [29] 胡枭, 樊耀波, 王敏健. 影响有机污染物在土壤中的迁移、转化行为的因素[J]. 环境科学进展, 1999, 7(5): 14-22. [30] 瞿程凯, 邢新丽, 刘佳, 等. 土壤-水环境系统有机氯农药垂直分布与迁移特征[J]. 环境科学与技术, 2013, 36(11): 44-48. [31] 肖丽珍, 张兵, 徐世光. 基于EVS的汞污染物空间分布模拟[J]. 有色金属工程, 2022, 12(5): 149-156. doi: 10.3969/j.issn.2095-1744.2022.05.19 [32] 门晓晔, 杨宗政, 刘肖, 等. 基于三维空间插值技术的某场地中总石油烃污染分布确定[J]. 安全与环境学报, 2017, 17(2): 713-718. doi: 10.13637/j.issn.1009-6094.2017.02.059 [33] 刘敏, 马运. 典型污染场地中滴滴涕浓度空间变异性研究[J]. 环境污染与防治, 2010, 32(11): 12-17. doi: 10.3969/j.issn.1001-3865.2010.11.004 [34] GRUNG M, LIN Y, ZHANG H, et al. Pesticide levels and environmental risk in aquatic environments in China - A review[J]. Environment International, 2015, 81: 87-97. doi: 10.1016/j.envint.2015.04.013