-
全氟和多氟烷基物质(Per- and polyfluoroalkyl substances,PFASs)是一组人工合成的有机化合物,具有高稳定性、表面活性、疏水疏油性、长距离迁移性和难降解性等独特的理化性质,被广泛应用于电子、食品、化工、家具、农药和医疗等众多领域[1]. 在生产和使用过程中,PFASs可通过多种途径进入到环境中. 研究表明,PFASs在全球环境中无处不在,在大气[2]、水体[3]、沉积物[3]及生物体内[4]均有检出. PFASs中的C—F键具有很强的极性,是自然界中键能最大的共价键之一(键能约460 kJ·mol−1 )[5],其优良的物理化学性质使其在环境介质中难以被物理、化学及生物作用降解[6]. 近年来对环境中PFASs污染及其潜在生态风险研究成为学术界和环境管理领域重点关注的问题. 2009年5月,联合国环境规划署正式将PFOS及其盐类等9种物质列为新型持久性有机污染物并纳入斯德哥尔摩公约[7]. 2014年,我国环境保护部印发了关于“全氟辛基磺酸及其盐类”等10种持久性有机污染物禁止生产、流通、使用和进出口公告.
目前有关PFASs的研究多集中于湖泊、河流和海洋,PFASs在这些水体中广泛存在. C—F链末端的亲水基团使PFOS和PFOA具有良好的水溶性(溶解度570 mg·L−1和3400 mg·L−1)[5],而海洋沉积物易与水体发生相互作用,并能为有机污染物提供疏水介质,因此海洋沉积物被认为是PFASs重要的“汇”之一. 北部湾位于中国南部,东起广东雷州半岛和海南岛,西与越南相邻,北至广西壮族自治区沿岸. 深度范围为10 m至60 m,平均深度38 m,海域总面积约为12.8万平方公里. 北部湾开发是国家一带一路重要战略,目前,以石化、浆纸、能源、粮油加工、冶金等产业主,一批相关产业正在加速进入北部湾地区,临海大工业产生的产业聚集效应正在逐步形成,对北部湾生态环境造成了越来越大的压力.
本研究针对北部湾海域共70个调查站点,采集海洋沉积物,测定其中11种PFASs(PFHxA、PFHpA、PFOA、PFNA、PFDA、PFUnDA、PFDoDA、PFTrDA、PFTeDA、PFHxS、PFOS)的含量,通过分析11种PFASs单体浓度水平和分布特征进行初步的生态风险评估,以期了解该地区全氟化合物的污染状况,为实施海洋环境监管与污染防控措施提供支撑.
全氟和多氟烷基物质在北部湾海域表层沉积物中的污染特征及风险评估
Pollution characteristics and risk assessment of perfluoroalkyl substances in surface sediments of the Beibu Gulf
-
摘要: 自21世纪以来,全氟和多氟烷基物质(per- and polyfluoroalkyl substances,PFASs)的环境问题一直受到科学界和公众的广泛关注. PFASs具有难降解、生物富集和长距离迁移等特点,已在大气、土壤和水体等环境介质及生物体中广泛检出. 本研究以北部湾海域70个表层沉积物样品为对象,对其中11种典型PFASs(PFHxA、PFHpA、PFOA、PFNA、PFDA、PFUnDA、PFDoDA、PFTrDA、PFTeDA、PFHxS、PFOS)进行了系统研究. 通过高效液相色谱-三重四极杆串联质谱法对该海域表层沉积物中PFASs污染水平进行分析,利用相关性分析对该海域表层沉积物中PFASs来源进行解析,并运用环境风险熵值法对该海域表层沉积物中PFASs污染进行了风险评估. 结果表明,北部湾海域70个点位中,除全氟己烷磺酸(PFHxS)未被检出外,其余10种PFASs均被检出,全氟己酸(perfluorohextanoic acid,PFHxA)、全氟辛酸(perfluorooctanoic acid,PFOA)及全氟辛烷磺酸(perfluorooctance sulfonic acid,PFOS)是浓度及检出率占绝对优势的单体;北部湾不同城市近岸海域沉积物中PFASs浓度具有明显差异. 相关性分析结果显示沉积物中的PFASs可能主要来自纺织业、造纸业、皮革加工行业及金属电镀行业等. 风险评估结果显示沉积物中PFHxA及PFOA浓度水平对北部湾水生和底栖生物处于中低风险,PFOS有一个点位处于高风险,需要持续关注.Abstract: The environmental problems of per- and polyfluoroalkyl substances (PFASs) have attracted extensive attention since the 21st century. PFASs have the characteristics of refractory, bioaccumulation and long-distance migration, and they have been widely detected in organisms and environmental media such as atmosphere, soil and water. In this study, 70 surface sediment samples were taken from the Beibu Gluf, and the pollution characteristics and potential ecological risks of 11 typical PFASs(PFHxA、PFHpA、PFOA、PFNA、PFDA、PFUnDA、PFDoDA、PFTrDA、PFTeDA、PFHxS、PFOS) were systematically studied. The pollution level of PFASs in the surface sediments of the Beibu Gulf was analyzed by high performance liquid chromatography-triple quadrupole tandem mass spectrometry, and the potential sources of PFASs of the Beibu Gulf were analyzed by correlation analysis. At the same time, the risk level of PFASs pollution in the surface sediments was evaluated by risk quotient method.The results showed that among 70 surface sediment samples, all 10 PFASs were detected except PFHxS. Perfluorohextanoic acid (PFHxA), perfluorooctanoic acid (PFOA) and perfluorooctance sulfonic acid (PFOS) had absolute advantages in concentration and detection rate. The concentration of PFASs in sediments from different city sea areas were significantly different. The results of correlation analysis showed that PFASs in sediments mainly came from textile industry, paper industry, leather processing industry, metal electroplating industry and so on. The results of risk assessment showed that the concentration levels of PFHxA and PFOA were at a lower risk to aquatic and benthic organisms in the Beibu Gulf, and the concentration of PFOS of one point was at a high risk, which need to be continuous attention.
-
表 1 本研究中PFASs的类别、名称、CAS号及分子量
Table 1. Category, name, CAS number and molecular weight of PFASs in this study
类别
Category中文名称
Chinese name英文名称
English name缩写
AbbreviationCAS 分子量/(g·mol−1)
Molecular weight内标物
Internal standard全氟烷基羧酸类 全氟己酸 Perfluorohextanoic acid PFHxA 307-24-4 314.0 MPFOA 全氟庚酸 Perfluoroheptanoic acid PFHpA 375-85-9 364.1 MPFOA 全氟辛酸 Perfluorooctanoic acid PFOA 335-67-1 414.0 MPFOA 全氟壬酸 Perfluorononanoic acid PFNA 375-95-1 464.0 MPFOA 全氟癸酸 Perfluorodecanoic acid PFDA 335-76-2 514.0 MPFDA 全氟十一烷酸 Perfluoroundecanoic acid PFUnDA 2058-94-8 564.1 MPFDA 全氟十二烷酸 Perfluorododecanoic acid PFDoDA 307-55-1 614.0 MPFDA 全氟十三烷酸 Perfluorotridecanoic acid PFTrDA 72629-94-8 664.1 MPFDA 全氟十四烷酸 Perfluorotetradecanoic acid PFTeDA 376-06-7 714.0 MPFDA 全氟烷基磺酸类 全氟己烷磺酸 Perfluorohexane sulfonic acid PFHxS 355-46-4 399.9 MPFOS 全氟辛烷磺酸 Perfluorooctance sulfonic acid PFOS 1763-23-1 499.9 MPFOS 表 2 海洋沉积物全氟化合物方法检出限
Table 2. Detection limit of PFASs in marine sediment
化合物
Compound添加量/ng
Addition amount检测平均值/
(ng·g−1)
AVE标准偏差/
(ng·g−1)
SD方法检出限/
(ng·g−1)
LOD定量下限/
(ng·g−1)
LOQ回收率/%
Rate of recoveryPFHxA 0.05 0.051 0.001 0.004 0.017 85.3 PFHpA 0.05 0.044 0.002 0.006 0.022 88.9 PFOA 0.05 0.042 0.002 0.006 0.025 98.7 PFNA 0.05 0.051 0.004 0.012 0.046 105.0 PFDA 0.05 0.051 0.007 0.022 0.086 106.3 PFUnDA 0.05 0.056 0.005 0.016 0.062 116.8 PFDoDA 0.05 0.055 0.010 0.032 0.127 119.3 PFTrDA 0.05 0.077 0.003 0.011 0.042 117.3 PFTeDA 0.05 0.074 0.005 0.015 0.061 97.2 PFHxS 0.05 0.042 0.005 0.014 0.057 118.2 PFOS 0.05 0.052 0.015 0.048 0.191 117.3 表 3 北部湾海域沉积物中PFASs的浓度(ng·g−1)和检出率(%)
Table 3. Concentration (ng·g−1) and detection rate (%) of PFASs in coastal sediments of the Beibu Gulf
化合物
Compounds均值
Average最小值
Minimum中位数
Median最大值
Maximum检出样品个数
Number of
samples detected检出率/%
Detection rate短链
Short-chain PFASsPFHxA 0.16 ND. 0.12 0.84 39 55.7 PFHpA 0.05 ND. 0.04 0.12 6 8.6 长链
Long-chain PFASsPFOA 0.19 ND. 0.17 0.70 60 85.7 PFNA ND. ND. ND. 0.04 1 1.4 PFDA 0.05 ND. 0.06 0.08 7 10.0 PFUnDA 0.14 ND. 0.15 0.23 4 5.7 PFDoDA ND. ND. ND. 0.06 1 1.4 PFTrDA 0.05 ND. 0.05 0.06 2 2.9 PFTeDA 0.20 ND. 0.25 0.26 3 4.3 PFHxS ND. ND. ND. ND. 0 0 PFOS 0.29 ND. 0.20 1.50 17 24.3 总计
Total PFASsShort-chain PFCs 0.14 ND. 0.11 0.84 39 55.7 Long-chain PFCs 0.19 ND. 0.17 1.50 62 88.6 ∑PFCs 0.18 ND. 0.14 1.50 70 100 ND.,未检出. ND.,not detected. 表 4 不同地区海洋沉积物中PFOA及PFOS的浓度
Table 4. Concentration of PFOA and PFOS in coastal sediments from different sea area
基质
Matrix地点
LocationPFOA/(ng·g−1) PFOS/(ng·g−1) 采样年份
Sampling year参考文献
ReferenceRange Mean Range Mean 沉积物
SedimentOverseas France ND. — ND.—22 1.7 2012 [14] China South Sea ND.—0.017 — ND.-0.026 — 2017—2018 [15] Coastal areas of Bohai 0.436—18.9 2.69 0.68—5.5 1.37 2017 [16] East Chine Sea ND.—0.87 0.18 ND.—0.89 0.10 2012 [17] Chinese Bohai Sea 0.20—1.00 0.46 ND.—0.20 — 2020 [18] Chinese Yellow Sea 0.091—1.826 — 0.007—0.227 — 2018 [19] Charieston, SC 0.02—2.52 0.42 0.09—7.37 1.52 2011 [20] German Baltic Sea 0.067—0.39 0.13 ND.—0.38 0.17 2017 [21] Sea of Beibu Gulf 0.04—0.25 0.11 0.04—0.20 0.10 2019 [22] Sea of Beibu Gulf ND.—0.70 0.19 ND.—1.50 0.29 2020 本研究 ND.,未检出. ND.,not detected. -
[1] BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins [J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258 [2] HAN D M, MA Y G, HUANG C, et al. Occurrence and source apportionment of perfluoroalkyl acids (PFAAs) in the atmosphere in China [J]. Atmospheric Chemistry and Physics, 2019, 19(22): 14107-14117. doi: 10.5194/acp-19-14107-2019 [3] 崔文杰, 彭吉星, 谭志军, 等. 全氟烷基物质在胶州湾海水、沉积物及生物中污染特征 [J]. 环境科学, 2019, 40(9): 3990-3999. doi: 10.13227/j.hjkx.201901104 CUI W J, PENG J X, TAN Z J, et al. Pollution characteristics of perfluorinated alkyl substances (PFASs) in seawater, sediments, and biological samples from Jiaozhou Bay, China [J]. Environmental Science, 2019, 40(9): 3990-3999(in Chinese). doi: 10.13227/j.hjkx.201901104
[4] JOUANNEAU W, BÅRDSEN B J, HERZKE D, et al. Spatiotemporal analysis of perfluoroalkyl substances in white-tailed eagle (Haliaeetus albicilla) nestlings from northern Norway-a ten-year study [J]. Environmental Science & Technology, 2020, 54(8): 5011-5020. [5] LAU C, ANITOLE K, HODES C, et al. Perfluoroalkyl acids: A review of monitoring and toxicological findings [J]. Toxicological Sciences, 2007, 99(2): 366-394. doi: 10.1093/toxsci/kfm128 [6] TANIYASU S, KANNAN K, SO M K, et al. Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota [J]. Journal of Chromatography A, 2005, 1093(1/2): 89-97. [7] WANG Z Y, BOUCHER J M, SCHERINGER M, et al. Toward a comprehensive global emission inventory of C4-C10 perfluoroalkanesulfonic acids (PFSAs) and related precursors: Focus on the life cycle of C8-based products and ongoing industrial transition [J]. Environmental Science & Technology, 2017, 51(8): 4482-4493. [8] 刘庆, 贺德春, 许振成, 等. 液相色谱-串联质谱法测定水体、沉积物及土壤中全氟化合物 [J]. 中国环境监测, 2014, 30(4): 134-139. doi: 10.3969/j.issn.1002-6002.2014.04.023 LIU Q, HE D C, XU Z C, et al. Analysis of polyfluoroalkyl chemicals in water, sediments and soil by liquid chromatography-tandem mass spectrometry [J]. Environmental Monitoring in China, 2014, 30(4): 134-139(in Chinese). doi: 10.3969/j.issn.1002-6002.2014.04.023
[9] LEEUWEN K V. Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No1488/94 on risk assessment for existing substances Part II[S]. European Chemicals Bureau (ECB), 2003(4): 204-218. [10] KWOK K Y, WANG X H, YA M L, et al. Occurrence and distribution of conventional and new classes of per- and polyfluoroalkyl substances (PFASs) in the South China Sea [J]. Journal of Hazardous Materials, 2015, 285: 389-397. doi: 10.1016/j.jhazmat.2014.10.065 [11] BRENDEL S, FETTER É, STAUDE C, et al. Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH [J]. Environmental Sciences Europe, 2018, 30(1): 9. doi: 10.1186/s12302-018-0134-4 [12] URTIAGA A, SORIANO A, CARRILLO-ABAD J. BDD anodic treatment of 6: 2 fluorotelomer sulfonate (6: 2 FTSA). Evaluation of operating variables and by-product formation [J]. Chemosphere, 2018, 201: 571-577. doi: 10.1016/j.chemosphere.2018.03.027 [13] LEE Y M, LEE J Y, KIM M K, et al. Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea [J]. Journal of Hazardous Materials, 2020, 381: 120909. doi: 10.1016/j.jhazmat.2019.120909 [14] MUNOZ G, LABADIE P, BOTTA F, et al. Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments [J]. Science of the Total Environment, 2017, 607/608: 243-252. doi: 10.1016/j.scitotenv.2017.06.146 [15] WANG Q, TSUI M M P, RUAN Y F, et al. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China sea coastal region [J]. Chemosphere, 2019, 231: 468-477. doi: 10.1016/j.chemosphere.2019.05.162 [16] LIU Y Q, ZHANG Y, LI J F, et al. Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China [J]. Environmental Pollution, 2019, 246: 34-44. doi: 10.1016/j.envpol.2018.11.113 [17] GAO Y, FU J J, ZENG L X, et al. Occurrence and fate of perfluoroalkyl substances in marine sediments from the Chinese Bohai Sea, Yellow Sea, and East China Sea [J]. Environmental Pollution, 2014, 194: 60-68. doi: 10.1016/j.envpol.2014.07.018 [18] ZHAO Z, CHENG X H, HUA X, et al. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers [J]. Environmental Pollution, 2020, 263: 114391. doi: 10.1016/j.envpol.2020.114391 [19] FENG X M, YE M Q, LI Y, et al. Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea [J]. Journal of Hazardous Materials, 2020, 389(10): 122-124. [20] WHITE N D, BALTHIS L, KANNAN K, et al. Elevated levels of perfluoroalkyl substances in estuarine sediments of Charleston, SC [J]. Science of the Total Environment, 2015, 521/522: 79-89. doi: 10.1016/j.scitotenv.2015.03.078 [21] JOERSS H, APEL C, EBINGHAUS R. Emerging per- and polyfluoroalkyl substances (PFASs) in surface water and sediment of the North and Baltic Seas [J]. The Science of the Total Environment, 2019, 686: 360-369. doi: 10.1016/j.scitotenv.2019.05.363 [22] 肖少可. 传统和替代全氟化合物在北部湾的空间分布、生物富集及营养级迁移[D]. 南宁: 广西大学, 2021. XIAO S K. Spatial distribution, bioaccumulation and trophic transfer of legacy and alternative per-and polyfluoroalkyl substances in the beibu gulf[D]. Nanning: Guangxi University, 2021(in Chinese).
[23] HABIBULLAH-AL-MAMUN M, AHMED M K, RAKNUZZAMAN M, et al. Occurrence and distribution of perfluoroalkyl acids (PFAAs) in surface water and sediment of a tropical coastal area (Bay of Bengal coast, Bangladesh) [J]. Science of the Total Environment, 2016, 571: 1089-1104. doi: 10.1016/j.scitotenv.2016.07.104 [24] AHRENS L, BARBER J L, XIE Z Y, et al. Longitudinal and latitudinal distribution of perfluoroalkyl compounds in the surface water of the Atlantic Ocean [J]. Environmental Science & Technology, 2009, 43(9): 3122-3127. [25] LI J, del VENTO S, SCHUSTER J, et al. Perfluorinated compounds in the Asian atmosphere [J]. Environmental Science & Technology, 2011, 45(17): 7241-7248. [26] XIAO F, HALBACH T R, SIMCIK M F, et al. Input characterization of perfluoroalkyl substances in wastewater treatment plants: Source discrimination by exploratory data analysis [J]. Water Research, 2012, 46(9): 3101-3109. doi: 10.1016/j.watres.2012.03.027 [27] XIE S W, WANG T Y, LIU S J, et al. Industrial source identification and emission estimation of perfluorooctane sulfonate in China [J]. Environment International, 2013, 52: 1-8. doi: 10.1016/j.envint.2012.11.004 [28] 张鸿, 赵亮, 何龙, 等. 不同功能区表层土中全氟化合物污染指纹及其来源解析 [J]. 环境科学, 2014, 35(7): 2698-2704. doi: 10.13227/j.hjkx.2014.07.037 ZHANG H, ZHAO L, HE L, et al. Pollution fingerprints and sources of perfluorinated compounds in surface soil of different functional areas [J]. Environmental Science, 2014, 35(7): 2698-2704(in Chinese). doi: 10.13227/j.hjkx.2014.07.037
[29] 何宗健, 甘甜, 彭希珑, 等. 环鄱阳湖城市污水处理厂污泥中全氟化合物的污染特征 [J]. 南昌大学学报(工科版), 2020, 42(2): 103-108. doi: 10.13764/j.cnki.ncdg.2020.02.001 HE Z J, GAN T, PENG X L, et al. Pollution characteristics of perfluorinated compounds in sludge from urban wastewater treatment plants around Poyang Lake [J]. Journal of Nanchang University (Engineering & Technology), 2020, 42(2): 103-108(in Chinese). doi: 10.13764/j.cnki.ncdg.2020.02.001