-
剩余污泥在处理城市污水的过程中经生化反应和沉降处理后产生,其中含有大量难以生物降解的有机物、重金属、病原微生物等[1-2],若不经有效处理而被直接使用或弃置,具有较大的二次污染风险。随着我国污水处理技术的不断改善,污泥产量也逐年提高。据估计,到2025年我国将产生超过6000万吨的湿污泥[3]。另一方面,高含水率和高有机质含量的餐厨垃圾也是城市固体废弃物的主要研究问题之一。餐厨垃圾日产量大且极易腐败,二者都亟待更高效经济的稳定化处置技术。
厌氧消化法是目前应用最为广泛的废弃物处理方法之一。但二者单消化的效果均不理想:污泥的可生化性低,而餐厨垃圾单消化极易出现体系过度酸化导致后续产酸产甲烷进程收到抑制,进而导致发酵体系崩溃[4]。二者按一定比例混合开展协同消化,可改善系统的稳定性和可生化性、提高处置效率及甲烷产量,实现二者资源化利用[5-8]。甲烷因其具有能源回收性成为时下污泥处置技术的主流目标产物,常作为清洁燃料投入应用。但考虑到甲烷的温室效应以及高化学惰性,污泥消化进程的中间产物挥发性脂肪酸(volatile fatty acids,VFAs)不仅同为能源物质,还具有更高的可生化性和利用价值[7,9]。因此,近年来也有越来越多的研究聚焦污泥酸化[10-13],以强化污泥的定向产VFAs。
然而,目前餐厨垃圾和剩余污泥协同消化的研究热点仍在提高体系的产气制氢能力[4,14-15],VFAs仍主要作为合成甲烷的中间产物而在消化进程中呈现先增加后减少的降解趋势,联合发酵体系产酸方面的研究有待深入。由黄宇钊等的研究可知[14],即使在协同消化前对体系进行酸化处理(pH 6),但最终消化进程仍向产甲烷的方向进行,产酸效果并不理想。而将微生物电解池(microbial electrolysis cell, MEC)耦合至厌氧消化(anaerobic digestion, AD)过程中(MEC-AD)可作为污泥和餐厨垃圾处理技术的新思路。微生物电解池为AD过程提供电子源,通过电调控或刺激选择性富集适宜微生物,提高特定种类的微生物间的相互作用,为实现定向产酸及提高产酸效率提供可能性[10,16]。同时,外加电源的引入构建的电势差,直接加速消化过程的电子迁移,不仅可提高废弃物转化效率,还具有极高的能量转换率[16]。近年来,越来越多的学者对MEC-AD技术的产甲烷效能进行研究,发现微生物与电化学共催化过程可提高甲烷的产量,提升污泥发酵效能[17-20],如Feng等研究发现,甲烷产量和污泥减少量分别增加了76.2%和26.6%[17]。 目前电化学技术常用作污水的处置技术,对于污泥更常见于预处理手段,如周涛等的研究[10],但将外加电压整合进完整的污泥发酵进程的研究并不多。且对于MEC-AD系统,目前的研究热点仍侧重于甲烷产量的提高,对于产酸阶段的研究仍需深入。
因此,本研究聚焦污泥消化进程的产酸阶段,构建MEC-AD系统,以污泥混合不同比例的餐厨垃圾作为消化基质开展系列厌氧发酵实验,研究不同外加条件对产酸进程和污泥发酵的影响,解析生物电催化体系下污泥的产酸规律,并探究外加电源对功能菌群的调控作用。本项目所取得的研究成果可为提高污泥消化效果、揭示生物电化学体系下的产酸规律和微生物代谢特点等研究板块提供一定参考。
生物电催化调控污泥-餐厨垃圾协同厌氧产酸研究
Regulated VFAs production from sewage sludge and food waste by in-situ bioelectrocatalytic regulation
-
摘要: 为探究不同餐厨垃圾(FW):剩余污泥(SS)配比下(以VS计)的产酸规律,构建单室式微生物电解池系统(MEC-AD),开展为期45 d的污泥与餐厨垃圾协同厌氧发酵实验,以寻找产酸最佳混合比例。结果表明,在外加电压为0.8 V时,外加电流调控可促进微生物生长,提高污泥-餐厨垃圾消化效果,强化挥发性脂肪酸(VFAs)产生,且该促进作用随餐厨垃圾添加比例的增高而愈发明显。当配比为FW∶SS = 8∶2、停留时间为7 d时,发酵体系达到最佳产酸效能,乙酸、丙酸产量分别高达164.7 mg·L−1和102.4 mg·L−1,乙酸产量相比对照组提高了5.7倍;同时出现大量异戊酸积累,其产量在38 d时达到176.1 mg·L−1。在最佳配比下,甲烷的产生受到明显遏制,氢气稳定生成,与产酸效果互相印证。碳毡电极扫描电镜分析表明,配比为FW∶SS = 8∶2的反应器中,可明显观测到优势菌种的附着情况和完整生物膜的形成。电极表面菌体的大量富集,促进了有机物的降解和电子释放,加速VFAs的产生。本研究可为生物电催化体系下污泥联合消化的产酸规律以及微生物代谢特征等研究提供一定的理论参考。Abstract: Microbial electrolysis cells and anaerobic digestion (MEC-AD) system was built up and the co-digestion of sewage sludge (SS) and food waste (FW) for volatile fatty acids (VFAs) production was conducted for 45 days to investigate the pattern of acidification under each FW : SS mixing ratio(VS : VS). The results showed that, under the applied voltage of 0.8 V, the stimulation of applied current could contribute to the growth of microorganisms, co-digestion efficiency and VFAs accumulation. The promotion became more obvious when the proportion of food waste was increased. The highest VFAs productivity was achieved under the mixing ratio of FW∶SS = 8∶2 and solid retention time of 7 d. The yield of acetic acid and propionic acid reached 164.7 mg·L−1 and 102.4 mg·L−1 respectively, and the acetic acid concentration was about 5.7 times of the control group. A large amount of isovaleric acid was produced simultaneously, with the yield of 176.1 mg·L−1 at 38 d Under the optimal ratio, the generation of methane and carbon dioxide was evidently restrained, while hydrogen was stably produced in accordance with the trend of VFAs production. The scanning electron microscope (SEM) clearly observed the adhesion of dominant microorganisms and formation of complete biofilm. The enrichment of microorganisms on the electrode surface promoted the release of electrons and VFAs production. This study could provide some references for VFAs production and recovery and the underlying enhancement mechanisms of bio-electrochemical stimulation on metabolic efficiencies of sludge and food waste.
-
Key words:
- microbial electrolysis cell(MEC) /
- food waste /
- sewage sludge /
- volatile fatty acids /
- co-digestion
-
表 1 基质和接种物的基本特性
Table 1. Characteristics of the substrates and inoculum
实验参数
Experimental parameters剩余污泥
Sewage sludge餐厨垃圾
Food waste接种污泥
Seed sludgeTS/(g·L−1) 24.9 ± 0.6 109.3 ± 0.8 22.6 ± 0.3 VS/(g·L−1) 13.7 ± 0.3 103.8 ± 0.6 10.2 ± 0.1 SCOD/(mg·L−1) 18697.2 ± 367.9 217688 ± 27519.2 20258 ± 441.5 注:TS(total solids),总固体;VS(volatile solids),挥发性固体;SCOD(soluble chemical oxygen demand),化学需氧量. -
[1] 孙立明, 邓舟, 夏洲, 等. 城市污水厂污泥处理处置现状分析及处理系统设计 [J]. 环境卫生工程, 2010, 18(4): 46-47,50. doi: 10.3969/j.issn.1005-8206.2010.04.016 SUN L M, DENG Z, XIA Z, et al. Treatment and disposal status of sludge from municipal wastewater plants and treatment system design [J]. Environmental Sanitation Engineering, 2010, 18(4): 46-47,50(in Chinese). doi: 10.3969/j.issn.1005-8206.2010.04.016
[2] 王东琴, 惠晓梅, 杨凯. 污泥处理处置技术进展 [J]. 山西化工, 2016, 36(3): 17-19,49. WANG D Q, HUI X M, YANG K. Research development of sludge treatment technology [J]. Shanxi Chemical Industry, 2016, 36(3): 17-19,49(in Chinese).
[3] 戴晓虎. 城镇污水处理厂污泥稳定化处理的必要性和迫切性的思考 [J]. 给水排水, 2017, 53(12): 1-5. doi: 10.3969/j.issn.1002-8471.2017.12.001 DAI X H. Necessity and urgency of sludge stabilization treatment in urban sewage treatment plant [J]. Water & Wastewater Engineering, 2017, 53(12): 1-5(in Chinese). doi: 10.3969/j.issn.1002-8471.2017.12.001
[4] 王永会, 赵明星, 阮文权. 餐厨垃圾与剩余污泥混合消化产沼气协同效应 [J]. 环境工程学报, 2014, 8(6): 2536-2542. WANG Y H, ZHAO M X, RUAN W Q. Synergistic effect of anaerobic co-digestion of food waste and excess sludge [J]. Chinese Journal of Environmental Engineering, 2014, 8(6): 2536-2542(in Chinese).
[5] 朱进. 污泥发酵产酸技术研究及应用进展 [J]. 山西化工, 2019, 39(5): 136-137. ZHU J. The research and progress on sludge fermentation acid production technology [J]. Shanxi Chemical Industry, 2019, 39(5): 136-137(in Chinese).
[6] 李冬娜, 马晓军. 污泥厌氧发酵产酸机理及应用研究进展 [J]. 生物质化学工程, 2020, 54(2): 51-60. doi: 10.3969/j.issn.1673-5854.2020.02.008 LI D N, MA X J. Mechanism and research progress of acid synthesis during sludge anaerobic fermentation [J]. Biomass Chemical Engineering, 2020, 54(2): 51-60(in Chinese). doi: 10.3969/j.issn.1673-5854.2020.02.008
[7] 叶秋月, 张赛楠. 污泥厌氧产酸发酵的影响因素及研究进展 [J]. 阜阳师范学院学报(自然科学版), 2019, 36(3): 15-20. YE Q Y, ZHANG S N. Influence factors and research progress in anaerobic acid fermentation of sludge [J]. Journal of Fuyang Normal University (Natural Science), 2019, 36(3): 15-20(in Chinese).
[8] 李华藩, 郑艳, 叶枢华, 等. 污泥餐厨垃圾不同混配比厌氧发酵产氢产甲烷 [J]. 福建师范大学学报(自然科学版), 2020, 36(4): 50-56. LI H F, ZHENG Y, YE S H, et al. Effect of different mixing ratios of sludge and kitchen waste anaerobic fermentation on hydrogen and methane production [J]. Journal of Fujian Normal University (Natural Science Edition), 2020, 36(4): 50-56(in Chinese).
[9] 戴金金, 牛承鑫, 潘阳, 等. 基于厌氧膜生物反应器的剩余污泥-餐厨垃圾厌氧共消化性能 [J]. 环境科学, 2020, 41(8): 3740-3747. DAI J J, NIU C X, PAN Y, et al. Performance of anaerobic membrane bioreactors for the co-digestion of sewage sludge and food waste [J]. Environmental Science, 2020, 41(8): 3740-3747(in Chinese).
[10] 周涛, 李阳, 宋楠, 等. 电刺激对餐厨垃圾-污泥共厌氧发酵产挥发性脂肪酸的影响 [J]. 环境工程学报, 2016, 10(12): 7195-7201. doi: 10.12030/j.cjee.201508031 ZHOU T, LI Y, SONG N, et al. Effect of electro-stimulation on volatile fatty acid production from anaerobic co-fermentation of food waste with activated sludge [J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7195-7201(in Chinese). doi: 10.12030/j.cjee.201508031
[11] 张莉, 刘和, 陈坚. 城市污泥添加厨余垃圾厌氧发酵产挥发性脂肪酸的研究 [J]. 工业微生物, 2011, 41(2): 26-31. ZHANG L, LIU H, CHEN J. Anaerobic acidogenic fermentation of wasted sewage sludge mixed with kitchen waste for production of volatile fatty acids [J]. Industrial Microbiology, 2011, 41(2): 26-31(in Chinese).
[12] 陈沂塽, 魏桃员, 周涛, 等. 电化学预处理对餐厨垃圾-污泥耦合厌氧发酵产挥发性脂肪酸的影响 [J]. 环境工程, 2021, 39(9): 187-192. CHEN Y S, WEI T Y, ZHOU T, et al. Effect of electrochemical pretreatment on production of volatile fatty acids by co-anaerobic fermentation of food waste and sewage sludge [J]. Environmental Engineering, 2021, 39(9): 187-192(in Chinese).
[13] 郑舍予. 剩余污泥联合餐厨垃圾高温共发酵产酸研究[D]. 上海: 华东理工大学, 2019. ZHENG S Y. Study on waste activated sludge thermophilic co-fermentation of acidification combined with food waste[D]. Shanghai: East China University of Science and Technology, 2019(in Chinese).
[14] 黄宇钊, 冼萍, 李桃, 等. 热碱处理污泥协同餐厨垃圾两相厌氧消化的特性 [J]. 环境工程, 2018, 36(9): 119-124. HUANG Y Z, XIAN P, LI T, et al. Two-phase anaerobic digestion performance of food waste and hot alkali treated sludge [J]. Environmental Engineering, 2018, 36(9): 119-124(in Chinese).
[15] 董春娟, 潘青业, 葛启隆, 等. 微氧颗粒污泥强化剩余污泥与餐厨垃圾协同消化 [J]. 中国给水排水, 2019, 35(11): 118-124. DONG C J, PAN Q Y, GE Q L, et al. Synergistic digestion characteristic of excess sludge and food waste enhanced by micro-aerobic granular sludge [J]. China Water & Wastewater, 2019, 35(11): 118-124(in Chinese).
[16] 郑小梅, 林茹晶, 周文静, 等. 微生物电解池辅助CO2甲烷化阴极材料的研究进展 [J]. 化工进展, 2022, 41(5): 2476-2486. ZHENG X M, LIN R J, ZHOU W J, et al. Review on cathode materials for CO2 methanation assisted by microbial electrolytic cell [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2476-2486(in Chinese).
[17] FENG Y H, ZHANG Y B, CHEN S, et al. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode [J]. Chemical Engineering Journal, 2015, 259: 787-794. doi: 10.1016/j.cej.2014.08.048 [18] LUO X, ZHANG F, LIU J, et al. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions [J]. Environmental Science & Technology, 2014, 48(15): 8911-8918. [19] NIU C X, PAN Y, LU X Q, et al. Mesophilic anaerobic digestion of thermally hydrolyzed sludge in anaerobic membrane bioreactor: Long-term performance, microbial community dynamics and membrane fouling mitigation [J]. Journal of Membrane Science, 2020, 612: 118264. doi: 10.1016/j.memsci.2020.118264 [20] 王万琼. 生物电化学强化污泥厌氧消化产甲烷效能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. WANG W Q. Bioelectrochemical system for the enhancement of methane production by anaerobic digestion of sludge[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
[21] QIN X, LU X Q, CAI T, et al. Magnetite-enhanced bioelectrochemical stimulation for biodegradation and biomethane production of waste activated sludge [J]. Science of the Total Environment, 2021, 789: 147859. doi: 10.1016/j.scitotenv.2021.147859 [22] WANG S S, HAN Y L, LU X Q, et al. Microbial mechanism underlying high methane production of coupled alkali-microwave-H2O2-oxidation pretreated sewage sludge by in situ bioelectrochemical regulation [J]. Journal of Cleaner Production, 2021, 305: 127195. doi: 10.1016/j.jclepro.2021.127195 [23] ZHI Z X, PAN Y, LU X Q, et al. Electrically regulating co-fermentation of sewage sludge and food waste towards promoting biomethane production and mass reduction [J]. Bioresource Technology, 2019, 279: 218-227. doi: 10.1016/j.biortech.2019.01.142 [24] APHA. Standard methods for the examination of water and wastewater [M]. 20th ed. Washington, DC, USA: A. P. H. Association, 1998. [25] DUBIOS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugar and related substances [J]. Analytical Chemistry, 1956, 28: 250-256. doi: 10.1021/ac60110a033 [26] 周雨绮, 曹麒, 许俊超, 等. 不同来源底物对厌氧发酵产氢余物产甲烷影响 [J]. 环境工程, 2021, 39(9): 123-130. ZHOU Y Q, CAO L, XU J C, et al. Influence of different source substrate systems on methanogenesis of residue from anaerobic fermentative hydrogen production using combined sludge and food waste [J]. Environmental Engineering, 2021, 39(9): 123-130(in Chinese).
[27] 陈思远, 肖向哲, 滕俊, 等. 剩余污泥厌氧消化过程产甲烷抑制技术研究进展 [J]. 环境工程, 2021, 39(6): 137-143. CHEN S Y, XIAO X Z, TENG J, et al. Research progress on methanogenic inhibition technology during anaerobic digestion of excess sludge [J]. Environmental Engineering, 2021, 39(6): 137-143(in Chinese).
[28] JOURDIN L, FREGUIA S, DONOSE B C, et al. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source [J]. Bioelectrochemistry, 2015, 102: 56-63. doi: 10.1016/j.bioelechem.2014.12.001 [29] LIENEMANN M, DEUTZMANN J S, MILTON R D, et al. Mediator-free enzymatic electrosynthesis of formate by the Methanococcus maripaludis heterodisulfide reductase super complex [J]. Bioresource Technology, 2018, 254: 278-283. doi: 10.1016/j.biortech.2018.01.036 [30] 王国华, 伊学农, 王峰, 等. 餐厨垃圾与污水污泥共消化产酸试验研究[J]. 环境工程, 2013, 31(S1): 166-169. WANG G H, YI X N, WANG F, et al. Study on acid production by anaerobic co-digestion of food waste and sewage sludge[J]. Environmental Engineering, 2013, 31(Sup 1): 166-169(in Chinese).
[31] BATSTONE D J, KELLER J, ANGELIDAKI I, et al. The IWA anaerobic digestion model no1 (ADM1) [J]. Water Science and Technology, 2002, 45(10): 65-73. doi: 10.2166/wst.2002.0292 [32] 马佳莹. 餐厨垃圾厌氧消化产甲烷强化策略及其微生物机制研究[D]. 上海: 华东师范大学, 2021. MA J Y. Enhancement for methane productivity of anaerobic digestion of food waste and its microbial mechanism[D]. Shanghai: East China Normal University, 2021(in Chinese).
[33] 周昱晗, 潘阳, 张瑞良, 等. 酸碱-微波耦合预处理对污泥胞外聚合物溶裂与产甲烷行为的影响 [J]. 环境工程, 2020, 38(12): 19-25,31. ZHOU Y H, PAN Y, ZHANG R L, et al. Effect of acid-alkali microwave combined pretreatment on rupture of sludge extracellular polymeric substances and methane production [J]. Environmental Engineering, 2020, 38(12): 19-25,31(in Chinese).
[34] ZHEN G Y, LU X Q, KOBAYASHI T, et al. Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp. ) and food waste: Kinetic modeling and synergistic impact evaluation [J]. Chemical Engineering Journal, 2016, 299: 332-341. doi: 10.1016/j.cej.2016.04.118 [35] NAM J Y, KIM D H, KIM S H, et al. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode [J]. Environmental Science and Pollution Research, 2016, 23(8): 7155-7161. doi: 10.1007/s11356-015-4880-1 [36] 张尧, 张闻杰, 蒋永, 等. 生物电化学系统固定二氧化碳同时产生乙酸和丁酸 [J]. 应用与环境生物学报, 2014, 20(2): 174-178. ZHANG Y, ZHANG W J, JIANG Y, et al. Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems [J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(2): 174-178(in Chinese).
[37] JOURDIN L, FREGUIA S, FLEXER V, et al. Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions [J]. Environmental Science & Technology, 2016, 50(4): 1982-1989. [38] ALBO J, ALVAREZ-GUERRA M, CASTANO P, et al. ChemInform abstract: Towards the electrochemical conversion of carbon dioxide into methanol[J]. Green Chem, 2015,46(24): 1-27. [39] HUANG W T, CHEN J F, HU Y Y, et al. Enhanced simultaneous decolorization of azo dye and electricity generation in microbial fuel cell (MFC) with redox mediator modified anode [J]. International Journal of Hydrogen Energy, 2017, 42(4): 2349-2359. doi: 10.1016/j.ijhydene.2016.09.216 [40] ZHEN G Y, LU X Q, LI Y Y, et al. Novel insights into enhanced dewaterability of waste activated sludge by Fe(II)-activated persulfate oxidation [J]. Bioresource Technology, 2012, 119: 7-14. doi: 10.1016/j.biortech.2012.05.115 [41] 郑韶娟, 陆雪琴, 张衷译, 等. 微生物电解池: 生物电催化辅助CO2甲烷化技术 [J]. 环境化学, 2019, 38(7): 1666-1674. doi: 10.7524/j.issn.0254-6108.2018091502 ZHENG S J, LU X Q, ZHANG Z Y, et al. Microbial electrolysis cell (MEC): A new platform for CO2 bioelectromethanogenesis assisted by bioelectrocatalysis [J]. Environmental Chemistry, 2019, 38(7): 1666-1674(in Chinese). doi: 10.7524/j.issn.0254-6108.2018091502
[42] 孙宏扬. 污泥厌氧消化—微生物电解耦合工艺产甲烷效能分析[D]. 哈尔滨: 哈尔滨工业大学, 2014. SUN H Y. Microbial electrolysis coupled sludge anaerobic digestion methanogenic process for waste activated sludge treatment[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
[43] 赵丹, 任南琪, 王爱杰, 等. 产酸相稳定发酵类型微生物生态学研究 [J]. 环境科学与技术, 2003, 26(6): 37-38,48. doi: 10.3969/j.issn.1003-6504.2003.06.016 ZHAO D, REN N Q, WANG A J, et al. Study on microbiological ecology of steady fermentation in acidogenic phase [J]. Environmental Science and Technology, 2003, 26(6): 37-38,48(in Chinese). doi: 10.3969/j.issn.1003-6504.2003.06.016
[44] 毛政中, 孙怡, 黄志鹏, 等. 微生物电解池产甲烷技术研究进展 [J]. 化工学报, 2019, 70(7): 2411-2425. MAO Z Z, SUN Y, HUANG Z P, et al. Progress of research on methanogenic microbial electrolysis cell [J]. CIESC Journal, 2019, 70(7): 2411-2425(in Chinese).