-
随着传统化石能源的快速消耗,大量的CO2被释放到大气中,随之而来的是越来越严重的能源和环境危机[1],因此通过光催化技术将CO2转化为具有高价值化学产品的方法已逐渐成为缓解能源危机和全球变暖的重要方法之一[2]。但由于C=O的断裂需要大量的能量并且在动力学上难以实现多电子反应过程[3],导致新型光催化剂的设计和合成实现CO2快速还原仍然面临巨大的挑战。
在以往的研究中,各种已开发的光催化剂主要分为两类,即均相催化剂和异相催化剂[4]。具有明确的单原子金属中心,并通过配位反应形成的分子配合物是目前应用最为广泛的均相光催化剂[5]。均相催化剂的光吸收、氧化还原电势和电子结构可以通过改变中心金属原子与各种有机配体的配位关系,从而调节其光催化活性和选择性来轻松实现[6]。近些年来一些廉价、低毒过渡金属铁、钴、镍配合物已被证实是降解有机染料以及CO2还原的有效光催化剂[7-8]。其中最为常见的Co(Ⅱ)离子不仅与多齿配体配位时会显示出良好的配位性[9-10],而且所形成得配合物具备较好的催化活性、产物选择性以及稳定性。另一方面,在共沸条件下将活性羰基(醛或酮)与伯胺缩合而形成的含有偶氮甲碱(−HC=N−)或亚胺(>C=N−)基团的席夫碱化合物因其灵活的配位方式与不同金属配位且由此形成的独特的光、电特性而受到研究者的广泛关注[11],因此将席夫碱化合物与钴盐反应后制备的配合物有望在光催化领域发挥效力。
本文首先合成了一种香豆素类席夫碱有机配体3-[(2-羟基-5-氯苯亚甲基)-氨基]-7-羟基香豆素(CHB),然后将配体CHB与过渡金属Co(Ⅱ)盐进行反应制备了一种单核离子型金属-有机小分子配合物CHB-Co,通过核磁共振氢谱(1H NMR)对配体的结构进行了表征,并通过质谱(MS)、元素分析、傅里叶变换红外光谱(FT-IR)以及紫外可见吸收光谱(UV-vis)表征了配合物的结构和光学特性。接着使用CHB-Co作为光催化剂,[Ru(phen)3](PF6)2为光敏剂,TEOA为牺牲剂探究了其光催化CO2还原性能,结果发现10 h后产生的CO的转换数(TON)和转换频率(TOF)分别为1468 h−1和146.8 h−1,选择性高达90%,最后通过电化学法和荧光分析法对该配合物光催化CO2还原的机理进行了系统地研究,为进一步推动该材料实现CO2资源化利用奠定了理论研究基础。
3-[(2-羟基-5-氯苯亚甲基)-氨基]-7-羟基香豆素钴配合物用于光催化还原CO2
The study of 3-[(2-hydroxy-5-chloro-benzylidene)-amino]-7- hydroxy-coumarin cobalt complex for photocatalytic reduction of CO2
-
摘要: 采用2,4-二羟基苯甲醛为起始原料合成了一种香豆素类席夫碱有机配体3-[(2-羟基-5-氯苯亚甲基)-氨基]-7-羟基香豆素CHB,接着将该配体与二价钴金属盐配位制备了新型的离子型金属-有机分子配合物CHB-Co,采用多种手段分别表征了配体和配合物的结构特征,然后研究了席夫碱类配合物CHB-Co对CO2还原的可见光催化活性。结果表明,优化各项实验条件后,配合物CHB-Co在H2O/CH3CN溶液 (V∶V=1∶4) 中光催化CO2还原的主要产物CO的产量为14.68 μmol,转换数(TON)值达1468,转换率(TOF)值为146.8 h−1,选择性高达90%。通过不同光照时间下催化剂与光敏剂的紫外可见吸收光谱实验结果验证光催化过程中催化剂CHB-Co稳定存在,光敏剂的光降解是造成光催化体系停滞的主要原因。电化学实验结果显示CO2氛围下配合物CHB-Co发生还原反应的起始电位位于−0.89 V(vs NHE),表明CHB-Co足以驱动电子从光敏剂的金属中心转移到催化剂,催化剂与光敏剂之间发生了有效的电子传递,从而催化CO2发生还原反应。通过荧光光谱和荧光猝灭实验可知,牺牲剂不会对激发态光敏剂产生猝灭效应,而催化剂可以,并且随着催化剂浓度的增大,其对激发态光敏剂的猝灭效应也逐渐增强,表明催化剂CHB-Co与光敏剂之间能够较好地进行电子传输,从而展现出该材料在减轻环境污染和CO2资源化利用方面的潜力。Abstract: While 2, 4-dihydroxy benzaldehyde was chosen as starting material, a coumarin Schiff-base ligand 3-[(2-hydroxy-5-chloro-benzylidene)-amino]-7- hydroxy -coumarin CHB was prepared. Subsequently, a novel cobalt Schiff base ionic metal-organic molecular complexes CHB-Co was synthesized and then characterized by various methods. The photocatalytic activities of this cobalt Schiff base complexes for visible-light-driven CO2 reduction were studied in detail. The experimental results show that CHB-Co possess excellent photocatalytic efficiency for CO2 reduction in H2O/CH3CN solution (V∶V=1∶4) under the optimum conditions. The yield of the main product CO was 14.68 µmol with the turnover number (TON) value of 1468 and the turnover frequency (TOF) value of 146.8 h−1. The selectivity was up to 90%. The results of UV-Vis absorption spectra of the catalyst and the photosensitizer under different illumination time verified that the catalysts CHB-Co was stable in the photocatalytic process, and the photodegradation of the photosensitizer was the main reason for the stagnation of the photocatalytic system. In contrast, electrochemical result showed that the initial potential of CHE-Co was −0.89 V (vs NHE), indicating that it is sufficient to drive electron transfer from the metal center of the photosensitizer toward the catalyst, and effective electron transfer occurred between the catalyst and the photosensitizer in the process of photocatalytic conversion of CO2. The fluorescence spectra and fluorescence quenching experiments showed that the sacrificial agent didn’t have quenching effect on the excited photosensitizer, while the catalyst did. With the increase of catalyst concentration, the quenching effect on the excited photosensitizer was gradually enhanced, suggesting that electron transport can be carried out between the catalyst and the photosensitizer. Therefore, above results show the perspective highlights of this material in reducing environmental pollution and the utilization of CO2 resources.
-
Key words:
- cobalt Schiff-base complex /
- synthesis /
- photocatalytic reduction of CO2 /
- mechanism.
-
表 1 不同催化剂光催化CO2为CO转化结果
Table 1. Results of photocatalytic CO2 to CO conversion with different catalysts
催化剂
Catalysts光敏剂
Photosensitizer转换数
TONCO转化频率/ h−1
TOFCO选择性 /%
Selectivity参考文献
LiteraturesCo-bipy CdS 4.1 0.5 88 16 Fe-CB CdS 1220 152.5 85 17 [Co(NTB)CH3CN](ClO4)2 $\rm Ru(phen)_3^{2+} $ 1179 115.2 97 18 Co-ZIF-67 $\rm Ru(bpy)_3^{2+} $ 112 224 66.7 19 CHB-Co $\rm Ru(phen)_3^{2+} $ 1468 146.8 90 本文 表 2 CHB-Co在不同控制变量下的光催化CO2还原结果
Table 2. Photoinduced CO2 reduction results by CHB-Co under different conditions
条目
EntryCHB-Co添加量 / (µmol·L−1)
AddedCO产量/µmol
Yield of COH2产量/µmol
Yield of H2转换数TONco 转换频率/h−1
TOFcoCO 选择性/ %
Selectivity of CO1 0.5 14.68 1.52 1468 146.8 90 2 0 trace trace 0 0 0 3 0.5 0 0 0 0 0 4 0.5 0 0 0 0 0 5 0.5 0 0 0 0 0 6 0.5 0 0.014 0 0 0 7 0 2.96 0.14 296 29.6 95 -
[1] KONDRATENKO E V, MUL G, BALTRUSAITIS J, et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes [J]. Energy & Environmental Science, 2013, 6(11): 3112. [2] RAO H, SCHMIDT L C, BONIN J, et al. Visible-light-driven methane formation from CO2 with a molecular iron catalyst [J]. Nature, 2017, 548(7665): 74-77. doi: 10.1038/nature23016 [3] LIU Y Y, YANG Y M, SUN Q L, et al. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework [J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7654-7658. [4] ZHANG J H, WEI M J, WEI Z W, et al. Ultrathin graphitic carbon nitride nanosheets for photocatalytic hydrogen evolution [J]. ACS Applied Nano Materials, 2020, 3(2): 1010-1018. doi: 10.1021/acsanm.9b02590 [5] GAO C, WANG J, XU H X, et al. Coordination chemistry in the design of heterogeneous photocatalysts [J]. Chemical Society Reviews, 2017, 46(10): 2799-2823. doi: 10.1039/C6CS00727A [6] BERARDI S, DROUET S, FRANCÀS L, et al. Molecular artificial photosynthesis [J]. Chemical Society Reviews, 2014, 43(22): 7501-7519. doi: 10.1039/C3CS60405E [7] WANG J, ZHONG Y Y, BAI C, et al. Series of coordination polymers with multifunctional properties for nitroaromatic compounds and CuII sensing [J]. Journal of Solid State Chemistry, 2020, 288: 121381. doi: 10.1016/j.jssc.2020.121381 [8] CHAI X M, HUANG H H, LIU H P, et al. Highly efficient and selective photocatalytic CO2 to CO conversion in aqueous solution [J]. Chemical Communications, 2020, 56(27): 3851-3854. doi: 10.1039/D0CC00879F [9] XUE X F, LIU Y Q, LIU Q, et al. Four novel coordination polymers based on flexible 1, 4-bis(1, 2, 4-triazol-1-ylmethyl)benzene ligand: Synthesis, structure, luminescence and magnetic properties [J]. Journal of Cluster Science, 2019, 30(3): 777-787. doi: 10.1007/s10876-019-01539-2 [10] BI Q Q, WANG J W, LV J X, et al. Selective photocatalytic CO2 reduction in water by electrostatic assembly of CdS nanocrystals with a dinuclear cobalt catalyst [J]. ACS Catalysis, 2018, 8(12): 11815-11821. doi: 10.1021/acscatal.8b03457 [11] JIANG J H, LEI Y H, LI X, et al. New cobalt(II) Schiff base complex: Synthesis, characterization, DFT calculation and antimicrobial activity [J]. Inorganic Chemistry Communications, 2021, 127: 108350. doi: 10.1016/j.inoche.2020.108350 [12] DURGAPAL S D, SONI R, SOMAN S S, et al. Synthesis and mesomorphic properties of coumarin derivatives with chalcone and imine linkages [J]. Journal of Molecular Liquids, 2020, 297: 111920. doi: 10.1016/j.molliq.2019.111920 [13] IRFAN R M, JIANG D C, SUN Z J, et al. Enhanced photocatalytic H2 production on CdS nanorods with simple molecular bidentate cobalt complexes as cocatalysts under visible light [J]. Dalton Transactions, 2016, 45(32): 12897-12905. doi: 10.1039/C6DT02148D [14] KEYPOUR H, SHAYESTEH M, REZAEIVALA M, et al. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(Ⅱ) and nickel(Ⅱ) complexes and their antibacterial properties [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2013, 101: 59-66. doi: 10.1016/j.saa.2012.09.048 [15] SHAHABADI N, KASHANIAN S, DARABI F. DNA binding and DNA cleavage studies of a water soluble cobalt(Ⅱ) complex containing dinitrogen Schiff base ligand: The effect of metal on the mode of binding [J]. European Journal of Medicinal Chemistry, 2010, 45(9): 4239-4245. doi: 10.1016/j.ejmech.2010.06.020 [16] CHAI Z G, LI Q, XU D S. Photocatalytic reduction of CO2 to CO utilizing a stable and efficient hetero–homogeneous hybrid system [J]. RSC Advances, 2014, 4(85): 44991-44995. doi: 10.1039/C4RA08848D [17] GUO J H, DAO X Y, SUN W Y. An iron-nitrogen doped carbon and CdS hybrid catalytic system for efficient CO2 photochemical reduction [J]. Chemical Communications, 2021, 57(16): 2033-2036. doi: 10.1039/D0CC07692A [18] OUYANG T, HOU C, WANG J W, et al. A highly selective and robust Co(Ⅱ)-based homogeneous catalyst for reduction of CO2 to CO in CH3CN/H2O solution driven by visible light [J]. Inorganic Chemistry, 2017, 56(13): 7307-7311. doi: 10.1021/acs.inorgchem.7b00566 [19] QIN J N, WANG S B, WANG X C. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst [J]. Applied Catalysis B:Environmental, 2017, 209: 476-482. doi: 10.1016/j.apcatb.2017.03.018 [20] WESTHUIZEN D, ESCHWEGE K G, CONRADIE J. Electrochemistry and spectroscopy of substituted [Ru(phen)3]2+ and [Ru(bpy)3]2+ complexes [J]. Electrochimica Acta, 2019, 320: 134540. doi: 10.1016/j.electacta.2019.07.051 [21] LIU D C, HUANG H H, WANG J W, et al. Highly efficient and selective visible-light driven CO2-to-CO conversion by a co(Ⅱ) homogeneous catalyst in H2O/CH3CN solution [J]. ChemCatChem, 2018, 10(16): 3435-3440. doi: 10.1002/cctc.201800727 [22] CHAN S L F, LAM T L, YANG C, et al. A robust and efficient cobalt molecular catalyst for CO2 reduction [J]. Chemical Communications, 2015, 51(37): 7799-7801. doi: 10.1039/C5CC00566C [23] OUYANG T, HUANG H H, WANG J W, et al. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution [J]. Angewandte Chemie (International Ed. in English), 2017, 56(3): 738-743. doi: 10.1002/anie.201610607 [24] SHIMODA T, MORISHIMA T, KODAMA K, et al. Photocatalytic CO2 reduction by trigonal-bipyramidal cobalt(Ⅱ) polypyridyl complexes: The nature of cobalt(I) and cobalt(0) complexes upon their reactions with CO2, CO, or proton [J]. Inorganic Chemistry, 2018, 57(9): 5486-5498. doi: 10.1021/acs.inorgchem.8b00433