[1] |
KONDRATENKO E V, MUL G, BALTRUSAITIS J, et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes [J]. Energy & Environmental Science, 2013, 6(11): 3112.
|
[2] |
RAO H, SCHMIDT L C, BONIN J, et al. Visible-light-driven methane formation from CO2 with a molecular iron catalyst [J]. Nature, 2017, 548(7665): 74-77. doi: 10.1038/nature23016
|
[3] |
LIU Y Y, YANG Y M, SUN Q L, et al. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework [J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7654-7658.
|
[4] |
ZHANG J H, WEI M J, WEI Z W, et al. Ultrathin graphitic carbon nitride nanosheets for photocatalytic hydrogen evolution [J]. ACS Applied Nano Materials, 2020, 3(2): 1010-1018. doi: 10.1021/acsanm.9b02590
|
[5] |
GAO C, WANG J, XU H X, et al. Coordination chemistry in the design of heterogeneous photocatalysts [J]. Chemical Society Reviews, 2017, 46(10): 2799-2823. doi: 10.1039/C6CS00727A
|
[6] |
BERARDI S, DROUET S, FRANCÀS L, et al. Molecular artificial photosynthesis [J]. Chemical Society Reviews, 2014, 43(22): 7501-7519. doi: 10.1039/C3CS60405E
|
[7] |
WANG J, ZHONG Y Y, BAI C, et al. Series of coordination polymers with multifunctional properties for nitroaromatic compounds and CuII sensing [J]. Journal of Solid State Chemistry, 2020, 288: 121381. doi: 10.1016/j.jssc.2020.121381
|
[8] |
CHAI X M, HUANG H H, LIU H P, et al. Highly efficient and selective photocatalytic CO2 to CO conversion in aqueous solution [J]. Chemical Communications, 2020, 56(27): 3851-3854. doi: 10.1039/D0CC00879F
|
[9] |
XUE X F, LIU Y Q, LIU Q, et al. Four novel coordination polymers based on flexible 1, 4-bis(1, 2, 4-triazol-1-ylmethyl)benzene ligand: Synthesis, structure, luminescence and magnetic properties [J]. Journal of Cluster Science, 2019, 30(3): 777-787. doi: 10.1007/s10876-019-01539-2
|
[10] |
BI Q Q, WANG J W, LV J X, et al. Selective photocatalytic CO2 reduction in water by electrostatic assembly of CdS nanocrystals with a dinuclear cobalt catalyst [J]. ACS Catalysis, 2018, 8(12): 11815-11821. doi: 10.1021/acscatal.8b03457
|
[11] |
JIANG J H, LEI Y H, LI X, et al. New cobalt(II) Schiff base complex: Synthesis, characterization, DFT calculation and antimicrobial activity [J]. Inorganic Chemistry Communications, 2021, 127: 108350. doi: 10.1016/j.inoche.2020.108350
|
[12] |
DURGAPAL S D, SONI R, SOMAN S S, et al. Synthesis and mesomorphic properties of coumarin derivatives with chalcone and imine linkages [J]. Journal of Molecular Liquids, 2020, 297: 111920. doi: 10.1016/j.molliq.2019.111920
|
[13] |
IRFAN R M, JIANG D C, SUN Z J, et al. Enhanced photocatalytic H2 production on CdS nanorods with simple molecular bidentate cobalt complexes as cocatalysts under visible light [J]. Dalton Transactions, 2016, 45(32): 12897-12905. doi: 10.1039/C6DT02148D
|
[14] |
KEYPOUR H, SHAYESTEH M, REZAEIVALA M, et al. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(Ⅱ) and nickel(Ⅱ) complexes and their antibacterial properties [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2013, 101: 59-66. doi: 10.1016/j.saa.2012.09.048
|
[15] |
SHAHABADI N, KASHANIAN S, DARABI F. DNA binding and DNA cleavage studies of a water soluble cobalt(Ⅱ) complex containing dinitrogen Schiff base ligand: The effect of metal on the mode of binding [J]. European Journal of Medicinal Chemistry, 2010, 45(9): 4239-4245. doi: 10.1016/j.ejmech.2010.06.020
|
[16] |
CHAI Z G, LI Q, XU D S. Photocatalytic reduction of CO2 to CO utilizing a stable and efficient hetero–homogeneous hybrid system [J]. RSC Advances, 2014, 4(85): 44991-44995. doi: 10.1039/C4RA08848D
|
[17] |
GUO J H, DAO X Y, SUN W Y. An iron-nitrogen doped carbon and CdS hybrid catalytic system for efficient CO2 photochemical reduction [J]. Chemical Communications, 2021, 57(16): 2033-2036. doi: 10.1039/D0CC07692A
|
[18] |
OUYANG T, HOU C, WANG J W, et al. A highly selective and robust Co(Ⅱ)-based homogeneous catalyst for reduction of CO2 to CO in CH3CN/H2O solution driven by visible light [J]. Inorganic Chemistry, 2017, 56(13): 7307-7311. doi: 10.1021/acs.inorgchem.7b00566
|
[19] |
QIN J N, WANG S B, WANG X C. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst [J]. Applied Catalysis B:Environmental, 2017, 209: 476-482. doi: 10.1016/j.apcatb.2017.03.018
|
[20] |
WESTHUIZEN D, ESCHWEGE K G, CONRADIE J. Electrochemistry and spectroscopy of substituted [Ru(phen)3]2+ and [Ru(bpy)3]2+ complexes [J]. Electrochimica Acta, 2019, 320: 134540. doi: 10.1016/j.electacta.2019.07.051
|
[21] |
LIU D C, HUANG H H, WANG J W, et al. Highly efficient and selective visible-light driven CO2-to-CO conversion by a co(Ⅱ) homogeneous catalyst in H2O/CH3CN solution [J]. ChemCatChem, 2018, 10(16): 3435-3440. doi: 10.1002/cctc.201800727
|
[22] |
CHAN S L F, LAM T L, YANG C, et al. A robust and efficient cobalt molecular catalyst for CO2 reduction [J]. Chemical Communications, 2015, 51(37): 7799-7801. doi: 10.1039/C5CC00566C
|
[23] |
OUYANG T, HUANG H H, WANG J W, et al. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution [J]. Angewandte Chemie (International Ed. in English), 2017, 56(3): 738-743. doi: 10.1002/anie.201610607
|
[24] |
SHIMODA T, MORISHIMA T, KODAMA K, et al. Photocatalytic CO2 reduction by trigonal-bipyramidal cobalt(Ⅱ) polypyridyl complexes: The nature of cobalt(I) and cobalt(0) complexes upon their reactions with CO2, CO, or proton [J]. Inorganic Chemistry, 2018, 57(9): 5486-5498. doi: 10.1021/acs.inorgchem.8b00433
|