-
水是生命之源,随着采矿业、金属制造业、造纸业和电镀等工业的快速发展,含有重金属的工业废水大量直接或间接地排放到水环境中,威胁着生态环境的稳定[1]。汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)等重金属由于不易被生物降解,在食物链中不断传递富集,对肾脏、血液系统以及神经系统产生威胁,最终损害人类的生命健康[2-4] ,重金属水污染处理成为当今世界热点议题之一。
水处理技术包含:化学沉淀法、混凝絮凝法、电化学处理法、吸附法、离子交换法、光催化法和生物处理法等。其中,吸附法具有去除效率高、操作简单和成本低等优点,是有效去除污染物的方式之一[5]。常见的吸附材料有活性炭、碳纳米管、生物炭、膨润土等材料[6-8]。碳纳米管具有许多独特的机械、电子、物理和化学性质,其热稳定性好,热阻率高,灵敏度高、在水中分散性好、化学性能稳定,制备简单[9-10]。在处理重金属废水方面,碳纳米管因其比表面积大,官能团多,具有优异的吸附性能和较高的吸附效率,是很好的候选吸附材料[11-12]。Lu等[13]通过吸附实验比较研究了碳纳米管和活性炭对Zn2+的吸附能力。利用Langmuir模型得到单壁碳纳米管、多壁碳纳米管和活性炭对Zn2+的最大吸附量分别为43.66、32.68、13.04 mg·g−1,表明碳纳米管对Zn2+的去除效果比活性炭显著。碳纳米管在表面引入分子链或者羰基(C=O)、羧基(—COOH)、氨基(—NH2)和羟基(—OH)等活性基团不仅能够提高碳纳米管的溶解性和稳定性,还提高碳纳米管对重金属离子的吸附能力[14]。Yang等[15]比较了原始和氨基改性多壁碳纳米管对Pb2+的吸附能力。改性后多壁碳纳米管对Pb2+的最大吸附量从6.8 mg·g−1提高到了147 mg·g−1。Neto等[16]将磁性氧化铁和多壁碳纳米管掺杂在一起,并与交联壳聚糖复合,制备的改性CLCh/MWCNT/Fe复合材料对Cr6+有较好的吸附能力,1 h内可以达到最大吸附量449.3 mg·g−1。众多的吸附实验表明,碳纳米管对重金属离子有很好的去除效果,是一种很有前景的废水处理材料。然而,吸附实验中通常采用例如扫描电镜图象观察吸附材料的表面形貌和微观结构;Langmuir、Freundlich模型拟合平衡等温线,计算最大吸附容量;准一阶、准二阶动力学模型分析吸附速率;红外光谱(FTIR)和X射线光电子能谱(XPS)探究可能的成键吸附方式[17]。以上传统的吸附实验分析手段对深层次的理解吸附材料与重金属之间的相互作用还存在着局限性。
近年来随着计算机技术的发展与应用,量子力学等理论方法的完善,计算化学发展日趋成熟。利用密度泛函理论(density functional theory, DFT)等方法计算与模拟,不仅能够实现对分子结构的优化,计算键长、键角,得到稳定的分子构型,还能够计算反应的吸附能来探究碳纳米管吸附重金属的稳定性;分子动力学模拟(molecular dynamics, MD)可以用来分析重金属离子在碳纳米管上吸附的动态特征[18]。一般来说,计算化学的理论计算结果能够定性分析吸附实验拟合的吸附量,实现了从微观角度探索反应机理,从原子角度更加直观的表达了碳纳米管吸附重金属离子的过程,为实验化学提供理论支持。因此,本文总结了近年来国内外研究人员利用计算化学研究碳纳米管对重金属的吸附研究进展,为探究两者之间的吸附机理提供理论支持。
碳纳米管吸附环境重金属机制研究——理论计算进展
Mechanism of adsorption of heavy metal ions by carbon nanotubes——progress in theoretical calculation
-
摘要: 重金属污染严重威胁着生态环境的平衡与稳定。碳纳米管因其比表面积较大,官能团丰富以及结构稳定等特性,对重金属离子具有良好的吸附能力,是废水处理中一种具有广泛应用前景的纳米材料。近年来,随着计算机技术和量子理论的不断发展,理论计算发展迅速。理论计算能够从微观角度分析吸附剂与吸附质之间可能存在的相互作用,探究两者之间的作用机理,为解释实验现象提供理论参考。本文从理论计算角度,以静态密度泛函理论计算与动态分子动力学模拟两方面,总结了碳纳米管在吸附重金属方面的研究进展。从碳纳米管的计算模型、优化结构、电子特性和能量等角度进行分析综述,探究碳纳米管与重金属离子之间的相互作用机理,以期能够为碳纳米管等纳米材料在废水处理中的广泛应用提供理论支持。Abstract: Heavy metal pollution is a serious threat to the balance and stability of the ecological environment. Due to their large specific surface area, rich functional groups and stable structure, carbon nanotubes have good adsorption capacity for heavy metal, and become a kind of nano materials with wide application prospects in wastewater treatment. In recent years, with the continuous development of computer technology and quantum theory, theoretical calculation has developed rapidly. We can analyze the possible interaction between adsorbent and adsorbate from the micro perspective, explore the interaction mechanism between them, and provide theoretical reference for explaining experimental phenomena. From the perspective of theoretical calculation, this work summarized the research progress of carbon nanotubes in the adsorption of heavy metal from aspects of density functional theory calculation and molecular dynamics simulation. In order to provide theoretical support for the wide application of carbon nanotubes and other nano materials in the wastewater treatment, we analyzed and summarized the calculational model, optimized configuration, electronic properties and interaction energy of carbon nanotubes, and explored the interaction mechanism between carbon nanotubes and heavy metal.
-
Key words:
- heavy metal /
- carbon nanotube /
- density functional theory /
- molecular dynamics simulation /
- adsorption
-
图 2 碳纳米管的5—1DB缺陷图(a)和拓扑缺陷图(b) [31]
Figure 2. 5—1DB defect graph (a) and Stone—Wales defect graph (b) of carbon nanotubes, in which 1, 2, 3, 4 and 5 represent different carbon atoms respectively, A and B are vacancy and a five-membered ring in SV defects ,C, D and E are seven-membered ring , five-membered ring and six-membered ring in SW defect[31]
图 4 (a) SV—(6,0)CNTs吸附Pb2+后C和Pb的PDOS图[34]; (b) O—CNTs2−的HOMO和LUMO图(Ⅰ),Pb2+与 O—CNTs2−孔径内阳离子—π相互作用(Ⅱ)、络合(Ⅲ)、碳纳米管表面阳离子—π相互作用(Ⅳ)和离子交换(Ⅴ)的HOMO和LUMO图[49]
Figure 4. (a) The PDOS of C and Pb in Pb2+—SV—(6, 0) CNTs [34];(b) HOMO and LUMO plots of O—CNTs2− (Ⅰ), O—CNTs2−+Pb2+ Inner—cation—π (Ⅱ), O—CNTs2−+Pb2+ Complexation (Ⅲ), O—CNTs2−+Pb2+ Outer—cation—π (Ⅳ) and O—CNTs2−+Pb2+ Eletrostatic (Ⅴ) with B3LYP/6—31G* level of theory[49]
图 7 Cd2+分别在(a)CNT—COOH、(b)CNT—CONH(CH2)2NH2和(c)CNT—CONH(CH2)2SH上的吸附结构。颜色符号:Cd2+:黄色;O:红色;N:蓝色;S:黄色;C:青色;H:白色,(d)三种官能团改性的CNTs体系中Cd2+的径向分布函数[60] ,(e) Cu2+在不同体系中的均方位移[61]
Figure 7. Adsorption structures of Cd2+on (a) CNT-COOH, (b) CNT-CONH(CH2)2NH2 and (c) CNT-CONH(CH2)2SH (Cd2+: yellow; O:red; N:blue;S:yellow;C:cyan;H:white), (d) radial distribution function of Cd2+ associate with COOH, CONH(CH2)2NH2 and CONH(CH2)2SH, respectively [60] , (e) mean square displacement of Cu2+ on CNT and hybrid graphene–CNT functionalized with OH and COOH [61].
表 1 碳纳米管吸附金属后的键距变化(单位 nm)
Table 1. The change of bond distance of carbon nanotubes after adsorption of metal, in nm.
结构
StructureZn—C Cu—C Pb—C Sn—C — 参考文献
ReferenceCNT—T 0.3590 0.2084 0.2628 0.2492 — [30] CNT—H 0.3589 0.2358 0.2555 0.2406 — CNT—B 0.3585 0.1940 0.2474 0.2389 — 结构
StructureC—O B/N—O Cr—O C—Cr B/N—Cr 参考文献
ReferenceCNT(3,3) 0.1416 — 0.1838 0.2931 — [37] CNT(5,5) 0.1436 — 0.1854 0.2909 — CNT(3,3)—B 0.2534 0.1448 0.1789 0.3554 0.2970 CNT(5,5)—B 0.2561 0.1476 0.1801 0.3488 0.2925 CNT(3,3)—N 0.2335 0.1481 0.1884 0.3581 0.2971 CNT(5,5)—N 0.2441 0.1520 0.1892 0.3313 0.2942 结构
StructureHg—O Hg—N C—N(NH2) C=O Hg—Cl 参考文献
ReferenceSWCNT—AA(侧壁) — — 0.1456 0.1219 — [43] SWCNT—AA(边缘) — — 0.1454 0.1230 — SWCNT—AA(侧壁)—Hg2+—单配位 — 0.3671 0.1443 0.1217 — SWCNT—AA(边缘)—Hg2+—单配位 — 0.3640 0.1441 0.1224 — SWCNT—AA(侧壁)—Hg2+—双配位 0.3792 0.6159 0.1460 0.1210 — SWCNT—AA(边缘)—Hg2+—双配位 0.5832 0.3690 0.1448 0.1224 — SWCNT—AA(侧壁)—HgCl2—单配位 — 0.2681 0.1465 0.1217 0.2360,0.2350 SWCNT—AA(边缘)—HgCl2—单配位 — 0.2640 0.1469 0.1229 0.2356,0.2354 SWCNT—AA(侧壁)—HgCl2—双配位 0.2708 0.2687 0.1468 0.1225 0.2387,0.2363 SWCNT—AA(边缘)—HgCl2—双配位 0.2601 0.2668 0.1467 0.1241 0.2392,0.2379 结构
StructureS—Hg (C=)O—Hg C—Hg — — 参考文献
ReferenceSWCNT—SH—Hg2+ 0.3868 0.5502 0.3214 — — [44] SWCNT—DTC—Hg2+ 0.4095 0.3339 0.5430 — — 0.5825 — — — — SWCNT—SH—HgCl2 0.5262 0.2537 0.4320 — — SWCNT—DTC—HgCl2 0.3684 0.2611 0.4295 — — 0.6170 — — — — 表 2 基于DFT计算改性单壁或多壁碳纳米管在水相和气相吸附金属的吸附能(eV)
Table 2. Based on DFT calculation, the adsorption energy of metal adsorption in water and gas phase of modified single-walled or multi walled carbon nanotubes
吸附剂
Adsorbent吸附质
Adsorbate水相ΔE/eV
Aqueous phase气相ΔE/eV
Gas phase计算方法
Method of calculation计算软件
Software参考文献
ReferenceSWCNT—AA(侧壁)—单配位 Hg2+ −8.63 −16.85 B3LYP, TZVP,SVP Turbomole [43] HgCl2 −0.39 −0.53 SWCNT—AA(侧壁)—双配位 Hg2+ −8.69 −17.14 HgCl2 −0.42 −0.65 SWCNT—AA(边缘)—单配位 Hg2+ −8.25 −16.56 HgCl2 −0.36 −0.45 SWCNT—AA(边缘)—双配位 Hg2+ −8.21 −16.56 HgCl2 −0.33 −0.50 SWCNT—SH Hg2+ −8.63 −17.07 B3LYP, TZVP, Hg2+( Grimme D3) Turbomole [44] HgCl2 −0.65 −0.90 SWCNT—DTC Hg2+ −8.63 −17.47 HgCl2 −0.71 −0.94 MWCNT—ttpy Pb2+ −10.21 — M06—2X, LANL2DZ—ECP(Pb,Zn), 6—31G(d,p)(其他原子),IEFPCM Gaussian09W [45] Zn2+ −6.23 — MWCNT—COOH Pb2+ −1.51 — Zn2+ −0.72 — CNT—COOH HCrO4− −0.46 — B3LYP/6-31G(C,H),cc—pVDZ(Cr,O),BBSE Gaussian09-E01 [46] Cr2O72− −0.53 — CrO42− 3.68 −5.09 CNT—COOH—OH HCrO4− −0.12 — Cr2O72− −0.36 — CrO42− 3.93 −4.15 CNT—COO−—OH HCrO4− −0.77 — Cr2O72− −0.19 — CrO42− 2.29 — PANI—CNT(未加电场) CrO42− — −0.58 PBE(Grimme D3)/ GTH, DZVPMOLOPT—GTH CP2K [47] Cr3+ — −0.07 PANI—CNT(施加电场) CrO42− — −1.39 Cr3+ — −1.94 表 3 RDF、MSD和PMF的公式及物理意义
Table 3. Formulas and physical meanings of RDF, MSD and PMF
符号
Symbol公式
Formula物理意义
Physical meaningRDF dN/4πρr2dr 以体系中某一粒子为中心,距该粒子r处出现另一个粒子的概率 MSD <[r(t+dt)-r(t)]2> 用于描述分子运动轨迹,其中< >表示对所有元素的平均值 PMF −kBT ln(P(r)) 反应了自由能随反应坐标的变化,其中kB为波尔兹曼常数,T为体系温度,P(r)为平均位置概率 -
[1] MUBARAK N M, SAHU J N, ABDULLAH E C, et al. Removal of heavy metals from wastewater using carbon nanotubes [J]. Separation & Purification Reviews, 2014, 43(4): 311-338. [2] FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011 [3] KRISHNA KUMAR A S, JIANG S J, TSENG W L. Effective adsorption of chromium(VI)/Cr(III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent [J]. Journal of Materials Chemistry A, 2015, 3(13): 7044-7057. doi: 10.1039/C4TA06948J [4] DIMPE K M, NOMNGONGO P N. A review on the efficacy of the application of myriad carbonaceous materials for the removal of toxic trace elements in the environment [J]. Trends in Environmental Analytical Chemistry, 2017, 16: 24-31. doi: 10.1016/j.teac.2017.10.001 [5] SANCEY B, TRUNFIO G, CHARLES J, et al. Heavy metal removal from industrial effluents by sorption on cross-linked starch: Chemical study and impact on water toxicity [J]. Journal of Environmental Management, 2011, 92(3): 765-772. doi: 10.1016/j.jenvman.2010.10.033 [6] SHARMA G, NAUSHAD M. Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: Isotherm and kinetic modelling [J]. Journal of Molecular Liquids, 2020, 310: 113025. doi: 10.1016/j.molliq.2020.113025 [7] HAN H W, RAFIQ M K, ZHOU T Y, et al. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants [J]. Journal of Hazardous Materials, 2019, 369: 780-796. doi: 10.1016/j.jhazmat.2019.02.003 [8] KAM C S, LEUNG T L, LIU F Z, et al. Lead removal from water – dependence on the form of carbon and surface functionalization [J]. RSC Advances, 2018, 8(33): 18355-18362. doi: 10.1039/C8RA02264J [9] ZENG L, ZHANG Z H, ZHOU C Y, et al. Molecular dynamics simulation and DFT calculations on the oil-water mixture separation by single-walled carbon nanotubes [J]. Applied Surface Science, 2020, 523: 146446. doi: 10.1016/j.apsusc.2020.146446 [10] SHARMA R, BAIK J H, PERERA C J, et al. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries [J]. Nano Letters, 2010, 10(2): 398-405. doi: 10.1021/nl902741x [11] LI Y H, WANG S G, WEI J Q, et al. Lead adsorption on carbon nanotubes [J]. Chemical Physics Letters, 2002, 357(3/4): 263-266. [12] IHSANULLAH, ABBAS A, AL-AMER A M, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications [J]. Separation and Purification Technology, 2016, 157: 141-161. doi: 10.1016/j.seppur.2015.11.039 [13] LU C, CHIU H. Adsorption of zinc(II) from water with purified carbon nanotubes [J]. Chemical Engineering Science, 2006, 61(4): 1138-1145. doi: 10.1016/j.ces.2005.08.007 [14] HAMON M A, HUI H, BHOWMIK P, et al. Ester-functionalized soluble single-walled carbon nanotubes [J]. Applied Physics A, 2002, 74(3): 333-338. doi: 10.1007/s003390201281 [15] YANG K L, LOU Z M, FU R Q, et al. Multiwalled carbon nanotubes incorporated with or without amino groups for aqueous Pb(II) removal: Comparison and mechanism study [J]. Journal of Molecular Liquids, 2018, 260: 149-158. doi: 10.1016/j.molliq.2018.03.082 [16] MARQUES NETO J D O, BELLATO C R, SILVA D D C. Iron oxide/carbon nanotubes/chitosan magnetic composite film for chromium species removal [J]. Chemosphere, 2019, 218: 391-401. doi: 10.1016/j.chemosphere.2018.11.080 [17] SOUNTHARARAJAH D P, LOGANATHAN P, KANDASAMY J, et al. Removing heavy metals using permeable pavement system with a titanate nano-fibrous adsorbent column as a post treatment [J]. Chemosphere, 2017, 168: 467-473. doi: 10.1016/j.chemosphere.2016.11.045 [18] ANSARI A, MEHRABIAN M A, HASHEMIPOUR H. Zinc ion adsorption on carbon nanotubes in an aqueous solution [J]. Polish Journal of Chemical Technology, 2012, 14(3): 29-37. doi: 10.2478/v10026-012-0081-6 [19] DEHGHANI M H, MOSTOFI M, ALIMOHAMMADI M, et al. High-performance removal of toxic phenol by single-walled and multi-walled carbon nanotubes: Kinetics, adsorption, mechanism and optimization studies [J]. Journal of Industrial and Engineering Chemistry, 2016, 35: 63-74. doi: 10.1016/j.jiec.2015.12.010 [20] JAWED A, SAXENA V, PANDEY L M. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review [J]. Journal of Water Process Engineering, 2020, 33: 101009. doi: 10.1016/j.jwpe.2019.101009 [21] AFKHAMI A, SHIRZADMEHR A, MADRAKIAN T, et al. Improvement in the performance of a Pb2 + selective potentiometric sensor using modified core/shell SiO2/Fe3O4 nano-structure [J]. Journal of Molecular Liquids, 2014, 199: 108-114. doi: 10.1016/j.molliq.2014.08.027 [22] ZHOU X, ZHAO C H, CHEN C T, et al. DFT study on adsorption of formaldehyde on pure, Pd-doped, Si-doped single-walled carbon nanotube [J]. Applied Surface Science, 2020, 525: 146595. doi: 10.1016/j.apsusc.2020.146595 [23] CHEN R J, CHOI H C, BANGSARUNTIP S, et al. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices [J]. Journal of the American Chemical Society, 2004, 126(5): 1563-1568. doi: 10.1021/ja038702m [24] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58. doi: 10.1038/354056a0 [25] CHEN T, LI A G. Synthesizing carbon nanotubes in space [J]. Astronomy & Astrophysics, 2019, 631: A54. [26] DRESSELHAUS M S, DRESSELHAUS G, SAITO R. Physics of Carbon Nanotubes[J]. Carbon, 1995, 33(7): 883-891. [27] KOZINSKY B, MARZARI N. Static dielectric properties of carbon nanotubes from first principles [J]. Physical Review Letters, 2006, 96(16): 166801. doi: 10.1103/PhysRevLett.96.166801 [28] 娄昀璟, 李雪花, 陈景文. 氧分子在碳纳米颗粒表面吸附的密度泛函理论研究 [J]. 环境化学, 2015, 34(9): 1587-1593. doi: 10.7524/j.issn.0254-6108.2015.09.2015042201 LOU Y J, LI X H, CHEN J W. Oxygen adsorption on carbon nanoparticles: A density functional theory study [J]. Environmental Chemistry, 2015, 34(9): 1587-1593(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.09.2015042201
[29] ZHANG C, WANG W J, DUAN A, et al. Adsorption behavior of engineered carbons and carbon nanomaterials for metal endocrine disruptors: Experiments and theoretical calculation [J]. Chemosphere, 2019, 222: 184-194. doi: 10.1016/j.chemosphere.2019.01.128 [30] ZHU Z, AN L, CHEN T, et al. The adsorption of divalent heavy metal ions on (8, 0) carbon nanotubes: The first-principles study [J]. Modern Physics Letters B, 2020, 34(32): 2050368. doi: 10.1142/S0217984920503686 [31] 代利峰, 安立宝. 含缺陷碳纳米管吸附Al原子的第一性原理研究 [J]. 特种铸造及有色合金, 2017, 37(3): 340-344. doi: 10.15980/j.tzzz.2017.03.029 DAI L F, AN L B. The first principles investigation on the adsorption of Al atoms on carbon nanotubes with defect [J]. Special Casting & Nonferrous Alloys, 2017, 37(3): 340-344(in Chinese). doi: 10.15980/j.tzzz.2017.03.029
[32] 张变霞, 杨春, 冯玉芳, 等. 碳纳米管吸附铜原子的密度泛函理论研究 [J]. 物理学报, 2009, 58(6): 4066-4071. doi: 10.3321/j.issn:1000-3290.2009.06.070 ZHANG B X, YANG C, FENG Y F, et al. A density functional theory study of the absorption behavior of copper on single-walled carbon nanotubes [J]. Acta Physica Sinica, 2009, 58(6): 4066-4071(in Chinese). doi: 10.3321/j.issn:1000-3290.2009.06.070
[33] 王清云, 佟永纯, 闫盆吉, 等. 缺陷碳纳米管限域金属Ti原子的理论研究 [J]. 原子与分子物理学报, 2019, 36(4): 588-593. doi: 10.3969/j.issn.1000-0364.2019.04.010 WANG Q Y, TONG Y C, YAN P J, et al. Theoretical study of Ti interaction with defect carbon nanotubes [J]. Journal of Atomic and Molecular Physics, 2019, 36(4): 588-593(in Chinese). doi: 10.3969/j.issn.1000-0364.2019.04.010
[34] LI W, ZHAO Y, WANG T. Study of Pb ion adsorption on (n, 0) CNTs (n=4, 5, 6) [J]. Nanotechnology Reviews, 2018, 7(6): 469-473. doi: 10.1515/ntrev-2018-0087 [35] ZHOU R L, HE H Y, PAN B C. Enhancing the topological structures of defected carbon nanotubes with adsorbed hydrocarbon radicals at low temperatures [J]. Physical Review B, 2007, 75(11): 113401. doi: 10.1103/PhysRevB.75.113401 [36] 刘贵立, 宋媛媛, 姜艳, 等. 拉压变形对B(N)掺杂碳纳米管Al吸附性能的影响 [J]. 沈阳工业大学学报, 2016, 38(4): 391-396. doi: 10.7688/j.issn.1000-1646.2016.04.06 LIU G L, SONG Y Y, JIANG Y, et al. Effect of tension and compression deformation on adsorption properties between Al and carbon nanotubes with B(N) doping [J]. Journal of Shenyang University of Technology, 2016, 38(4): 391-396(in Chinese). doi: 10.7688/j.issn.1000-1646.2016.04.06
[37] HIZHNYI Y, NEDILKO S, BORYSIUK V, et al. Ab initio computational study of chromate molecular anion adsorption on the surfaces of pristine and B- or N-doped carbon nanotubes and graphene [J]. Nanoscale Research Letters, 2017, 12(1): 71. doi: 10.1186/s11671-017-1846-x [38] 杨忠华, 刘贵立, 曲迎东, 等. N掺杂碳纳米管环吸附Fe原子的第一性原理研究 [J]. 计算物理, 2016, 33(3): 374-378. doi: 10.3969/j.issn.1001-246X.2016.03.014 YANG Z H, LIU G L, QU Y D, et al. First principles study on adsorbing of Fe on N doping carbon nanotube rings [J]. Chinese Journal of Computational Physics, 2016, 33(3): 374-378(in Chinese). doi: 10.3969/j.issn.1001-246X.2016.03.014
[39] 姚洁. 硼/氮掺杂碳纳米管与石墨烯吸附性能的第一性原理研究[D]. 武汉: 华中科技大学, 2013. YAO J. First principles investigation of the adsorption on boron-or nitrogen-doped carbon nanotube and graphene[D]. Wuhan: Huazhong University of Science and Technology, 2013(in Chinese).
[40] ZHAO J J, PARK H, HAN J, et al. Electronic properties of carbon nanotubes with covalent sidewall functionalization [J]. The Journal of Physical Chemistry B, 2004, 108(14): 4227-4230. doi: 10.1021/jp036814u [41] CHEŁMECKA E, PASTERNY K, KUPKA T, et al. DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes [J]. Journal of Molecular Modeling, 2012, 18(5): 2241-2246. doi: 10.1007/s00894-011-1242-x [42] WANG C C, ZHOU G, LIU H T, et al. Chemical functionalization of carbon nanotubes by carboxyl groups on stone-wales defects: A density functional theory study [J]. The Journal of Physical Chemistry B, 2006, 110(21): 10266-10271. doi: 10.1021/jp060412f [43] SINGHA DEB A K, DWIVEDI V, DASGUPTA K, et al. Novel amidoamine functionalized multi-walled carbon nanotubes for removal of mercury(II) ions from wastewater: Combined experimental and density functional theoretical approach [J]. Chemical Engineering Journal, 2017, 313: 899-911. doi: 10.1016/j.cej.2016.10.126 [44] SINGHA DEB A K, DHUME N, DASGUPTA K, et al. Sulphur ligand functionalized carbon nanotubes for removal of mercury from waste water - experimental and density functional theoretical study [J]. Separation Science and Technology, 2019, 54(10): 1573-1587. doi: 10.1080/01496395.2018.1529044 [45] OYETADE O A, SKELTON A A, NYAMORI V O, et al. Experimental and DFT studies on the selective adsorption of Pb2+ and Zn2+ from aqueous solution by nitrogen-functionalized multiwalled carbon nanotubes [J]. Separation and Purification Technology, 2017, 188: 174-187. doi: 10.1016/j.seppur.2017.07.022 [46] HIZHNYI Y, NEDILKO S, BORYSIUK V, et al. Removal of oxoanions of MVI(MVI=Cr, Mo, W) metals by carbon nanostructures: Insights into mechanisms from DFT calculations [J]. International Journal of Quantum Chemistry, 2018, 118(20): e25715. doi: 10.1002/qua.25715 [47] LIU Y B, LIU F Q, DING N, et al. Boosting Cr(VI) detoxification and sequestration efficiency with carbon nanotube electrochemical filter functionalized with nanoscale polyaniline: Performance and mechanism [J]. Science of the Total Environment, 2019, 695: 133926. doi: 10.1016/j.scitotenv.2019.133926 [48] LIU Y B, LIU F Q, QI Z L, et al. Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter [J]. Environmental Pollution, 2019, 251: 72-80. doi: 10.1016/j.envpol.2019.04.116 [49] SAITO R, FUJITA M, DRESSELHAUS G, et al. Electronic structure of chiral graphene tubules [J]. Applied Physics Letters, 1992, 60(18): 2204-2206. doi: 10.1063/1.107080 [50] ZHANG J L, LI T, LI X Y, et al. A key role of inner-cation-π interaction in adsorption of Pb(II) on carbon nanotubes: Experimental and DFT studies [J]. Journal of Hazardous Materials, 2021, 412: 125187. doi: 10.1016/j.jhazmat.2021.125187 [51] ZHAO G K, ZHU H W. Cation-π interactions in graphene-containing systems for water treatment and beyond [J]. Advanced Materials (Deerfield Beach, Fla. ), 2020, 32(22): e1905756. doi: 10.1002/adma.201905756 [52] 张志森, 王琦, 陈尔余. 自由能计算方法及其在生物大分子体系中的适用性问题 [J]. 中国科学:化学, 2014, 44(6): 854-863. doi: 10.1360/N032014-00005 ZHANG Z S, WANG Q, CHEN E Y. Free energy calculation and its application in bio-complex system [J]. Scientia Sinica (Chimica), 2014, 44(6): 854-863(in Chinese). doi: 10.1360/N032014-00005
[53] KALINICHEV A G, KIRKPATRICK R J. Molecular dynamics simulation of cationic complexation with natural organic matter [J]. European Journal of Soil Science, 2007, 58(4): 909-917. doi: 10.1111/j.1365-2389.2007.00929.x [54] ALLEN M P. Molecular graphics and the computer simulation of liquid crystals [J]. Molecular Simulation, 1989, 2(4/5/6): 301-306. [55] 赵超锋, 金佳人, 霍英忠, 等. 氧化石墨烯吸附水体中酚类有机污染物的分子动力学模拟 [J]. 无机材料学报, 2020, 35(3): 277-285. doi: 10.15541/jim20190377 ZHAO C F, JIN J R, HUO Y Z, et al. Adsorption of phenolic organic pollutants on graphene oxide: Molecular dynamics study [J]. Journal of Inorganic Materials, 2020, 35(3): 277-285(in Chinese). doi: 10.15541/jim20190377
[56] SHANG J J, YANG Q S, YAN X H, et al. Ionic adsorption and desorption of CNT nanoropes [J]. Nanomaterials, 2016, 6(10): 177. doi: 10.3390/nano6100177 [57] DEZFOLI A R A, MEHRABIAN M A, HASHEMIPOUR H. Study of interaction energies in zinc ion adsorption on charged carbon nano-tubes using molecular dynamics simulation [J]. Journal of Computational and Theoretical Nanoscience, 2013, 10(10): 2411-2417. doi: 10.1166/jctn.2013.3223 [58] ANSARI DEZFOLI A R, MEHRABIAN M A, HASHEMIPOUR H. Comparative study of Zn(II) and Cd(II) ions adsorption on charged carbon nano tubes: Molecular dynamics approach [J]. Adsorption, 2013, 19(6): 1253-1261. doi: 10.1007/s10450-013-9567-7 [59] ANITHA K, NAMSANI S, SINGH J K. Removal of heavy metal ions using a functionalized single-walled carbon nanotube: A molecular dynamics study [J]. The Journal of Physical Chemistry A, 2015, 119(30): 8349-8358. doi: 10.1021/acs.jpca.5b03352 [60] SAHU P, SINGHA DEB A K, ALI S K M, et al. Tailoring of carbon nanotubes for the adsorption of heavy metal ions: Molecular dynamics and experimental investigations [J]. Molecular Systems Design & Engineering, 2018, 3(6): 917-929. [61] POORSARGOL M, RAZMARA Z, AMIRI M M. The role of hydroxyl and carboxyl functional groups in adsorption of copper by carbon nanotube and hybrid graphene-carbon nanotube: Insights from molecular dynamic simulation [J]. Adsorption, 2020, 26(3): 397-405. doi: 10.1007/s10450-020-00214-7