-
随着科学技术的迅速发展,化学品的数量急剧增多;2019年5月至2021年7月的两年间,美国化学文摘(Chemical Abstracts Service,简称CAS)登记的化学品数目就从1.5亿增长至2.5亿(http:/www.cas.org),两年注册量达1亿. 数量巨大、种类繁多的化学品进入环境中,会在不同的环境介质中产生相应的物理、化学和生物过程,部分化学品可能会引发巨大的生态风险与健康风险,而这些高风险污染物的环境行为已成为环境科学领域关注的重要问题[1–5];污染物与不同环境界面的相互作用机制更是其中的核心研究内容之一[6]. 污染物经各种暴露途径进入到环境后,会在水、大气、土壤等不同环境介质中和介质之间进行迁移转化. 事实上,无论是不同环境介质间还是在单一环境介质中,均存在不同类型的环境界面. 环境化学品在这些环境界面上能够发生吸附-解吸、氧化还原、催化降解乃至转化生成毒性更强的污染物等环境化学过程[7]. 因此,解析污染物的环境界面行为机制至关重要[8]. 遗憾的是,单纯依赖实验研究不仅难以满足大量化学品检测的需求,而且即便是借助同步辐射等先进大型科学装置,亦难以完全解析污染物在不同环境界面吸附、生成、转化等行为的分子机制[9-10]. 而采用环境计算化学手段,则有望通过相应的模拟分析揭示污染物界面行为的结构基础和化学机理,在污染物界面相关行为机制探索方面均展示出独特魅力[11].
污染物界面作用模拟中普遍使用的典型分子间作用方法主要有量子力学(quantum mechanics,简称QM)、分子动力学(molecular dynamics,简称MD)模拟及基于粗粒化模型(coarse-grained model,简称CG模型)的粗粒化分子动力学(coarse-grained molecular dynamics,简称CG-MD)模拟和耗散粒子动力学(dissipative particle dynamics,简称DPD)模拟等. 由于不同环境界面问题关注的尺度和化学性质的不同,其所适用的计算方法各不相同(图1). 如QM方法虽能够在原子水平上提供传统化学键生成和断裂的信息,对涉及分子结构变化的污染物界面生成和转化机制研究方面有很好的应用效果,但因其计算量庞大,故只适用于处理有限原子数目的体系[12]. 全原子MD模拟方法能够在微观水平上解析污染物在不同环境介质中的动态作用机制,相较于QM方法,其适用的时间尺度更长,空间尺度也更大[13]. 基于粗粒化模型的CG-MD和DPD方法能够在介观尺度上研究污染物的环境界面行为,适用于更加复杂而宏观的环境体系,但模拟的精度不如MD模拟[14-15].
针对不同的环境界面问题,需要选择不同的计算模拟方法去平衡计算精度与所需资源. 随着计算机运算能力的大幅提升,通过建立不同尺度的污染物-环境界面作用模型,使用分子间相互作用计算模拟方法解析污染物形成、吸附、扩散乃至转化的环境化学机制,同时实现不依赖实验数据的污染物环境界面行为的高通量解析成为可能. 近年来,计算模拟方法在污染物界面行为特征以及均相环境转化路径等研究方面均取得了诸多进展,在辅助揭示污染物环境行为化学机制的同时,为进一步评估污染物的环境毒性和生态风险提供了高效的评估工具[16-17]. 但是,污染物种类的多样性及环境体系的复杂性仍然对通过计算方法解析污染物环境界面行为的微观机制提出了更高要求. 对于复杂的环境系统而言,污染物在其中的环境界面行为涉及微观到介观多个尺度. 根据研究环境界面问题的特点和研究目标,选用多种计算方法联用,从不同的视角提供多样化的机制信息正在成为必然[18-19]. 本文对环境化学领域应用较多的3类计算模拟方法及它们在研究污染物环境界面行为方面的应用进行了回顾与总结,评述了不同计算模拟方法在处理不同尺度环境问题时的适用性,并对未来的发展作了展望.
污染物环境界面行为的多尺度计算模拟
Multi-scale simulation for the environmental interface behavior of pollutants
-
摘要: 污染物的环境界面行为研究一直是环境科学领域的核心和热点内容之一. 借助于计算方法能够突破实验方法分析水平的限制,提供从微观到介观的多尺度上的污染物界面行为的化学机制与结构特征. 量子力学方法、全原子分子动力学模拟和基于粗粒化体系模型的分子动力学模拟及耗散粒子动力学模拟等不同分子间作用计算方法可依次从原子尺度、分子尺度到介观尺度实现污染物环境界面行为的模拟分析,提供丰富多样的污染物与环境表面相互作用信息. 本文综述了典型分子间作用计算模拟方法在污染物的环境界面生成、吸附乃至催化转化等方面的应用进展,分析了现有研究存在的问题和不足,并对未来的研究重点提出了展望.Abstract: The research on the environmental interface behavior of pollutants has always been one of the core and hot topics in the field of environmental science. With the help of computational methods, it can break through the limitations of the analytical level of experimental methods, and to provide valuable information on the chemical mechanism and structural characteristics of pollutant interface behaviors on multi-scales from microscopic to mesoscopic. Different intermolecular interaction calculation methods, such as quantum mechanical method, all-atom molecular dynamics simulation, and dissipative particle dynamics simulation and molecular dynamics simulation based on coarse-grained system models, can realize the simulation analysis of pollutant-environment interface behavior from atomic scale, molecular scale to mesoscopic scale in turn, and provide diverse information on the interaction mechanisms of pollutants with environmental surfaces. In this paper, the application of different typical intermolecular interaction computational simulation methods in the interfacial generation, adsorption and even catalytic conversion of environmental pollutants was reviewed. The problems and limitations of the existing application research of computational methods were analyzed, and the future research focus is put forward.
-
表 1 常用分子力场及其适用情况
Table 1. Typical molecular force fields and their applications
力场
Force field应用
ApplicationsAMBER(Assisted Model Building and Energy Refinement) 蛋白质、核酸等生物分子体系 CFF(Consistent Force Field) 有机分子、高分子及生物大分子等 CVFF(Consistent Valence Force Field) 氨基酸及水等 CHARMM(Chemistry at Harvard Molecular Mechanics) 生物大分子体系及无机材料等小分子体系 UFF(Universal Force Field) 涵盖整个周期表,包括含阳离子体系 COMPASS(Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies) 金属、金属离子及金属氧化物 MMX 有机小分子 MMFF(Merck Molecular Force Field) 有机分子 ff19SB 蛋白质体系 OPLS(Optimized Potential for Liquid Simulations) 多肽、核酸、有机溶剂等液体体系 lipid21 磷脂体系 OL21 核酸体系 GAFF(General AMBER Force Field) 有机分子 ECEPP(Empirical Conformational Energy Program for Peptides) 多肽和蛋白质分子体系 GROMOS(Groningen Molecular Simulation) 蛋白质、核酸和糖的水溶剂及极性溶液 IFF(Interface Force Field) 金属、矿物和聚合物材料界面 -
[1] 阮挺, 江桂斌. 发现新型环境有机污染物的基本理论与方法 [J]. 中国科学院院刊, 2020, 35(11): 1328-1336. doi: 10.16418/j.issn.1000-3045.20200915004 RUAN T, JIANG G B. Basic theory and analytical methodology for identification of novel environmental organic pollutants [J]. Bulletin of Chinese Academy of Sciences, 2020, 35(11): 1328-1336(in Chinese). doi: 10.16418/j.issn.1000-3045.20200915004
[2] 张佩萱, 高丽荣, 宋世杰, 等. 环境中短链和中链氯化石蜡的来源、污染特征及环境行为研究进展 [J]. 环境化学, 2021, 40(2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603 ZHANG P X, GAO L R, SONG S J, et al. Chlorinated paraffins in the environment: A review on their sources, levels and fate [J]. Environmental Chemistry, 2021, 40(2): 371-383(in Chinese). doi: 10.7524/j.issn.0254-6108.2020101603
[3] 林泳峰, 阮挺, 江桂斌. 新型全氟和多氟烷基化合物的分析、行为与效应研究进展 [J]. 科学通报, 2017, 62(24): 2724-2733. doi: 10.1360/N972017-00223 LIN Y F, RUAN T, JIANG G B. Progress on analytical methods and environmental behavior of emerging per-and polyfluoroalkyl substances [J]. Chinese Science Bulletin, 2017, 62(24): 2724-2733(in Chinese). doi: 10.1360/N972017-00223
[4] DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change?[J]. Environmental Health Perspectives, 1999, 107(Suppl 6): 907-938. [5] MANZETTI S, van der SPOEL E R, van der SPOEL D. Chemical properties, environmental fate, and degradation of seven classes of pollutants [J]. Chemical Research in Toxicology, 2014, 27(5): 713-737. doi: 10.1021/tx500014w [6] ZHAO S, WANG J H, FENG S J, et al. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review [J]. Science of the Total Environment, 2022, 804: 150140. doi: 10.1016/j.scitotenv.2021.150140 [7] 曲久辉, 贺泓, 刘会娟. 典型环境微界面及其对污染物环境行为的影响 [J]. 环境科学学报, 2009, 29(1): 2-10. doi: 10.3321/j.issn:0253-2468.2009.01.002 QU J H, HE H, LIU H J. Typical environmental micro-interfaces and its effect on environmental behaviors of pollutants [J]. Acta Scientiae Circumstantiae, 2009, 29(1): 2-10(in Chinese). doi: 10.3321/j.issn:0253-2468.2009.01.002
[8] 张爱茜, 刘景富, 景传勇, 等. 我国环境化学研究新进展 [J]. 化学通报, 2014, 77(7): 654-659. doi: 10.14159/j.cnki.0441-3776.2014.07.005 ZHANG A Q, LIU J F, JING C Y, et al. Latest progresses in environmental chemistry in China [J]. Chemistry, 2014, 77(7): 654-659(in Chinese). doi: 10.14159/j.cnki.0441-3776.2014.07.005
[9] DAUGHTON C G. “Emerging” chemicals as pollutants in the environment: A 21st century perspective [J]. Renewable Resources Journal, 2005, 23(4): 6-23. [10] 李院霞, 史雪倩, 李红, 等. 同步辐射X射线荧光和吸收谱技术在环境汞污染研究中的应用进展 [J]. 生态毒理学报, 2018, 13(6): 30-38. LI Y X, SHI X Q, LI H, et al. Review of studies using synchrotron radiation X-ray fluorescence and X-ray absorption spectrum techniques on environmental Hg pollution [J]. Asian Journal of Ecotoxicology, 2018, 13(6): 30-38(in Chinese).
[11] 陈景文, 王中钰, 傅志强. 环境计算化学与毒理学[M]. 北京: 科学出版社, 2018. CHEN J W, WANG Z Y, FU Z Q. Environmental computational chemistry and toxicology [M]. Beijing: Science Press, 2018(in Chinese).
[12] TOMASI J, MENNUCCI B, CAMMI R. Quantum mechanical continuum solvation models [J]. Chemical Reviews, 2005, 36(42): 2999-3093. [13] ALLEN M P, TILDESLEY D J. Computer Simulation of Liquids[M]. Second edition. Oxford, United Kingdom: Oxford University Press, 2017. [14] OTTO D P, DE VILLIERS M M. Coarse-grained molecular dynamics (CG-MD) simulation of the encapsulation of dexamethasone in PSS/PDDA layer-by-layer assembled polyelectrolyte nanocapsules [J]. AAPS PharmSciTech, 2020, 21(8): 292. doi: 10.1208/s12249-020-01843-5 [15] LIU M B, LIU G R, ZHOU L W, et al. Dissipative Particle Dynamics (DPD): An overview and recent developments [J]. Archives of Computational Methods in Engineering, 2015, 22(4): 529-556. doi: 10.1007/s11831-014-9124-x [16] ORSI M. Molecular dynamics simulation of humic substances [J]. Chemical and Biological Technologies in Agriculture, 2014, 1: 10. doi: 10.1186/s40538-014-0010-4 [17] TRATNYEK P G, BYLASKA E J, WEBER E J. In silico environmental chemical science: Properties and processes from statistical and computational modelling [J]. Environmental Science. Processes & Impacts, 2017, 19(3): 188-202. [18] FENG H R, LIN Y, SUN Y Z, et al. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface [J]. Water Research, 2017, 114: 144-150. doi: 10.1016/j.watres.2017.02.024 [19] JIANG X Z, WANG W, YU G, et al. Contribution of nanobubbles for PFAS adsorption on graphene and OH- and NH2-functionalized graphene: Comparing simulations with experimental results [J]. Environmental Science & Technology, 2021, 55(19): 13254-13263. [20] 林梦海. 量子化学简明教程[M]. 北京: 化学工业出版社, 2005. LIN M H. Concise course in quantum chemistry [M]. Beijing: Chemical Industry Press, 2005(in Chinese).
[21] van der SPOEL D, MANZETTI S, ZHANG H Y, et al. Prediction of partition coefficients of environmental toxins using computational chemistry methods [J]. ACS Omega, 2019, 4(9): 13772-13781. doi: 10.1021/acsomega.9b01277 [22] FU W J, XIA G J, ZHANG Y X, et al. Using general computational chemistry strategy to unravel the reactivity of emerging pollutants: An example of sulfonamide chlorination [J]. Water Research, 2021, 202: 117391. doi: 10.1016/j.watres.2021.117391 [23] MILMAN V, WINKLER B, WHITE J A, et al. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study [J]. International Journal of Quantum Chemistry, 2000, 77(5): 895-910. doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C [24] MAZUREK A H, SZELESZCZUK Ł, PISKLAK D M. Periodic DFT calculations-review of applications in the pharmaceutical sciences [J]. Pharmaceutics, 2020, 12(5): 415. doi: 10.3390/pharmaceutics12050415 [25] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Physical Review, 1964, 136(3B): B864-B871. doi: 10.1103/PhysRev.136.B864 [26] KOHN W, BECKE A D, PARR R G. Density functional theory of electronic structure [J]. The Journal of Physical Chemistry, 1996, 100(31): 12974-12980. doi: 10.1021/jp960669l [27] RAMACHANDRAN K I, DEEPA G, NAMBOORI K. Computational chemistry and molecular modeling[M]. Berlin: Springer Berlin Heidelberg, 2008 [28] RAPAPORT D. The art of molecular dynamics simulation [M]. 2nd ed. Cambridge: Cambridge University Press, 2004 [29] 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007. CHEN Z L, XU W R, TANG L D. Theory and practice of molecular simulation [M]. Beijing: Chemical Industry Press, 2007(in Chinese).
[30] KLEIN M L, SHINODA W. Large-scale molecular dynamics simulations of self-assembling systems [J]. Science, 2008, 321(5890): 798-800. doi: 10.1126/science.1157834 [31] JOSHI S Y, DESHMUKH S A. A review of advancements in coarse-grained molecular dynamics simulations [J]. Molecular Simulation, 2021, 47(10/11): 786-803. [32] ALESSANDRI R, GRÜNEWALD F, MARRINK S J. The martini model in materials science [J]. Advanced Materials, 2021, 33(24): 2008635. doi: 10.1002/adma.202008635 [33] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhysics Letters, 1992, 19(3): 155-160. doi: 10.1209/0295-5075/19/3/001 [34] KONG Y, MANKE C W, MADDEN W G, et al. Simulation of a confined polymer in solution using the dissipative particle dynamics method [J]. International Journal of Thermophysics, 1994, 15(6): 1093-1101. doi: 10.1007/BF01458818 [35] ESPAÑOL P. Hydrodynamics from dissipative particle dynamics [J]. Physical Review E, 1995, 52(2): 1734-1742. doi: 10.1103/PhysRevE.52.1734 [36] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. The Journal of Chemical Physics, 1997, 107(11): 4423-4435. doi: 10.1063/1.474784 [37] GUO F Y, XU J C, FEIN J B, et al. Crystal face-dependent methylmercury adsorption onto mackinawite (FeS) nanocrystals: A DFT-D3 study [J]. Chemical Engineering Journal, 2021, 420: 127594. doi: 10.1016/j.cej.2020.127594 [38] AHMED A A, THIELE-BRUHN S, LEINWEBER P, et al. Towards a molecular level understanding of the sulfanilamide-soil organic matter-interaction [J]. Science of the Total Environment, 2016, 559: 347-355. doi: 10.1016/j.scitotenv.2016.03.136 [39] LI J, WU Y L, BAI H H, et al. Highly efficient adsorption and mechanism of alkylphenols on magnetic reduced graphene oxide [J]. Chemosphere, 2021, 283: 131232. doi: 10.1016/j.chemosphere.2021.131232 [40] ZOU M Y, ZHANG J D, CHEN J W, et al. Simulating adsorption of organic pollutants on finite (8, 0) single-walled carbon nanotubes in water [J]. Environmental Science & Technology, 2012, 46(16): 8887-8894. [41] MOSALLANEJAD S, DLUGOGORSKI B Z, KENNEDY E M, et al. Formation of PCDD/fs in oxidation of 2-chlorophenol on neat silica surface [J]. Environmental Science & Technology, 2016, 50(3): 1412-1418. [42] PAN W X, CHANG J M, LIU X, et al. Interfacial formation of environmentally persistent free radicals—A theoretical investigation on pentachlorophenol activation on montmorillonite in PM2.5 [J]. Ecotoxicology and Environmental Safety, 2019, 169: 623-630. doi: 10.1016/j.ecoenv.2018.11.041 [43] ASSAF N W, ALTARAWNEH M, OLUWOYE I, et al. Formation of environmentally persistent free radicals on α-Al2O3 [J]. Environmental Science & Technology, 2016, 50(20): 11094-11102. [44] LOMNICKI S, TRUONG H, VEJERANO E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter [J]. Environmental Science & Technology, 2008, 42(13): 4982-4988. [45] SAKR N I, KIZILKAYA O, CARLSON S F, et al. Formation of environmentally persistent free radicals (EPFRs) on the phenol-dosed α-Fe2O3(0001) surface [J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2021, 125(40): 21882-21890. doi: 10.1021/acs.jpcc.1c04298 [46] AHMED O H, ALTARAWNEH M, AL-HARAHSHEH M, et al. Formation of phenoxy-type environmental persistent free radicals (EPFRs) from dissociative adsorption of phenol on Cu/Fe and their partial oxides [J]. Chemosphere, 2020, 240: 124921. doi: 10.1016/j.chemosphere.2019.124921 [47] PAN W X, CHANG J M, HE S M, et al. Major influence of hydroxyl and nitrate radicals on air pollution by environmentally persistent free radicals [J]. Environmental Chemistry Letters, 2021, 19(6): 4455-4461. doi: 10.1007/s10311-021-01278-9 [48] LIU C, MIN Y, ZHANG A Y, et al. Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO2: Efficiency, characteristics and mechanisms [J]. Water Research, 2019, 165: 114980. doi: 10.1016/j.watres.2019.114980 [49] HUANG M J, HAN Y, XIANG W, et al. In situ-formed phenoxyl radical on the CuO surface triggers efficient persulfate activation for phenol degradation [J]. Environmental Science & Technology, 2021, 55(22): 15361-15370. [50] GAO M, HE G, ZHANG W, et al. Reaction pathways of the selective catalytic reduction of NO with NH3 on the α-Fe2O3 (012) surface: A combined experimental and DFT study [J]. Environmental Science & Technology, 2021, 55(16): 10967-10974. [51] SUI H, LI L, ZHU X Z, et al. Modeling the adsorption of PAH mixture in silica nanopores by molecular dynamic simulation combined with machine learning [J]. Chemosphere, 2016, 144: 1950-1959. doi: 10.1016/j.chemosphere.2015.10.053 [52] ARISTILDE L, MARICHAL C, MIÉHÉ-BRENDLÉ J, et al. Interactions of oxytetracycline with a smectite clay: A spectroscopic study with molecular simulations [J]. Environmental Science & Technology, 2010, 44(20): 7839-7845. [53] KERISIT S, LIU C X. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces [J]. Environmental Science & Technology, 2014, 48(7): 3899-3907. [54] WILLEMSEN J A R, MYNENI S C B, BOURG I C. Molecular dynamics simulations of the adsorption of phthalate esters on smectite clay surfaces [J]. The Journal of Physical Chemistry C, 2019, 123(22): 13624-13636. doi: 10.1021/acs.jpcc.9b01864 [55] ZHU X Z, CHEN D Y, WU G Z. Molecular dynamic simulation of asphaltene co-aggregation with humic acid during oil spill [J]. Chemosphere, 2015, 138: 412-421. doi: 10.1016/j.chemosphere.2015.06.074 [56] PETROV D, TUNEGA D, GERZABEK M H, et al. Molecular modelling of sorption processes of a range of diverse small organic molecules in Leonardite humic acid [J]. European Journal of Soil Science, 2020, 71(5): 831-844. [57] VIALYKH E A, SALAHUB D R, ACHARI G, et al. Emergent functional behaviour of humic substances perceived as complex labile aggregates of small organic molecules and oligomers [J]. Environmental Chemistry, 2019, 16(7): 505. doi: 10.1071/EN19095 [58] TUNEGA D, GERZABEK M H, HABERHAUER G, et al. Adsorption process of polar and nonpolar compounds in a nanopore model of humic substances [J]. European Journal of Soil Science, 2020, 71(5): 845-855. [59] ZHAO N, JU F, PAN H, et al. Molecular dynamics simulation of the interaction of water and humic acid in the adsorption of polycyclic aromatic hydrocarbons [J]. Environmental Science and Pollution Research International, 2020, 27(20): 25754-25765. doi: 10.1007/s11356-020-09018-2 [60] 林文强, 徐斌, 陈亮, 等. 双酚A在氧化石墨烯表面吸附的分子动力学模拟 [J]. 物理学报, 2016, 65(13): 86-92. doi: 10.7498/aps.65.133102 LIN W Q, XU B, CHEN L, et al. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide [J]. Acta Physica Sinica, 2016, 65(13): 86-92(in Chinese). doi: 10.7498/aps.65.133102
[61] WANG Y, COMER J, CHEN Z F, et al. Exploring adsorption of neutral aromatic pollutants onto graphene nanomaterials via molecular dynamics simulations and theoretical linear solvation energy relationships [J]. Environmental Science:Nano, 2018, 5: 2117-2128. doi: 10.1039/C8EN00575C [62] TANG H, ZHAO Y, SHAN S J, et al. Theoretical insight into the adsorption of aromatic compounds on graphene oxide [J]. Environmental Science:Nano, 2018, 5(10): 2357-2367. doi: 10.1039/C8EN00384J [63] TANG H, ZHAO Y, YANG X N, et al. Understanding the pH-dependent adsorption of ionizable compounds on graphene oxide using molecular dynamics simulations [J]. Environmental Science:Nano, 2017, 4(10): 1935-1943. doi: 10.1039/C7EN00585G [64] TANG H, ZHAO Y, SHAN S J, et al. Wrinkle- and edge-adsorption of aromatic compounds on graphene oxide as revealed by atomic force microscopy, molecular dynamics simulation, and density functional theory [J]. Environmental Science & Technology, 2018, 52(14): 7689-7697. [65] 赵超锋, 金佳人, 霍英忠, 等. 氧化石墨烯吸附水体中酚类有机污染物的分子动力学模拟 [J]. 无机材料学报, 2020, 35(3): 277-285. doi: 10.15541/jim20190377 ZHAO C F, JIN J R, HUO Y Z, et al. Adsorption of phenolic organic pollutants on graphene oxide: Molecular dynamics study [J]. Journal of Inorganic Materials, 2020, 35(3): 277-285(in Chinese). doi: 10.15541/jim20190377
[66] SCHWARZENBACH R P, ESCHER B I, FENNER K, et al. The challenge of micropollutants in aquatic systems [J]. Science, 2006, 313(5790): 1072-1077. doi: 10.1126/science.1127291 [67] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782 [68] RAMALHO J P P, DORDIO A V, CARVALHO A J P. The fate of three common plastic nanoparticles in water: A molecular dynamics study [J]. Journal of Molecular Structure, 2022, 1249: 131520. doi: 10.1016/j.molstruc.2021.131520 [69] GUO X, LIU Y, WANG J L. Equilibrium, kinetics and molecular dynamic modeling of Sr2+ sorption onto microplastics [J]. Journal of Hazardous Materials, 2020, 400: 123324. doi: 10.1016/j.jhazmat.2020.123324 [70] LI H, WANG F H, LI J N, et al. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation [J]. Chemosphere, 2021, 264: 128556. doi: 10.1016/j.chemosphere.2020.128556 [71] CHEN Y J, LI J N, WANG F H, et al. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation [J]. Chemosphere, 2021, 265: 129133. doi: 10.1016/j.chemosphere.2020.129133 [72] MOORE M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? [J]. Environment International, 2006, 32(8): 967-976. doi: 10.1016/j.envint.2006.06.014 [73] LADO TOURIÑO I, NARANJO A C, NEGRI V, et al. Coarse-grained molecular dynamics simulation of water diffusion in the presence of carbon nanotubes [J]. Journal of Molecular Graphics and Modelling, 2015, 62: 69-73. doi: 10.1016/j.jmgm.2015.09.009 [74] WANG Z, QUIK J T K, SONG L, et al. Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles [J]. Environmental Toxicology and Chemistry, 2018, 37(4): 1024-1031. doi: 10.1002/etc.4059 [75] DETTMANN L F, KÜHN O, AHMED A A. Coarse-grained molecular dynamics simulations of nanoplastics interacting with a hydrophobic environment in aqueous solution [J]. RSC Advances, 2021, 11(44): 27734-27744. doi: 10.1039/D1RA04439G [76] FENG H R, ZHANG H Y, CAO H M, et al. Application of a novel coarse-grained soil organic matter model in the environment [J]. Environmental Science & Technology, 2018, 52(24): 14228-14234. [77] RUIZ-MORALES Y, MULLINS O C. Coarse-grained molecular simulations to investigate asphaltenes at the oil-water interface [J]. Energy & Fuels, 2015, 29(3): 1597-1609. [78] DING N, CHEN X F, WU C M L. Interactions between polybrominated diphenyl ethers and graphene surface: A DFT and MD investigation [J]. Environmental Science:Nano, 2014, 1(1): 55-63. doi: 10.1039/C3EN00037K [79] CORTÉS-ARRIAGADA D, TORO-LABBÉ A. A theoretical investigation of the removal of methylated arsenic pollutants with silicon doped graphene [J]. RSC Advances, 2016, 6(34): 28500-28511. doi: 10.1039/C6RA03813A [80] ZHANG C, LIU X D, LU X C, et al. Understanding the heterogeneous nucleation of heavy metal phyllosilicates on clay edges with first-principles molecular dynamics [J]. Environmental Science & Technology, 2019, 53(23): 13704-13712.