-
纳米材料(如碳纳米材料、金属及氧化物纳米材料、纳米聚合物和量子点)因其尺寸小、比表面积大和表面活性高而具有表面效应、小尺寸效应、介电限域和量子效应等,已被广泛应用于医学、生物、交通、能源化工、环境保护、农业、计算机和电子电气等诸多领域。据统计,2017年全球纳米材料市场规模超过897亿美元[1]。随着生产和应用不断扩大,纳米颗粒越来越多地被排放到环境中。
土壤是环境中纳米颗粒最重要的汇[2]。已有研究报道土壤中纳米颗粒的暴露改变土壤微生物群落、抑制植物根芽伸长和种子萌发以及导致蚯蚓的回避行为[3-5]。纳米颗粒可能通过物理损伤生物体细胞、诱发氧化应激反应和释放有毒物质等途径妨碍生理活性,造成生物毒性。此外,纳米颗粒可能被植物吸收或被土壤动物摄入,在生物体内转运、分布和富集,产生难以预测的毒性[6-7]。因此,从纳米颗粒的生物有效性和毒性方面,全面了解纳米颗粒如何对土壤生物产生不利影响非常必要。
一旦纳米颗粒进入环境,将不可避免地与共存污染物相互作用,产生一系列生物效应[8]。例如,添加1%纳米氧化铁使土壤中总石油烃的微生物降解率提高了11.0%[9]。Cui等[10]报道了添加生物炭和单壁碳纳米管(SWCNTs)明显抑制了沉积物中菲的微生物可降解性,使其矿化率显著下降9.1%—20.1%,且SWCNTs的抑制作用强于生物炭。研究表明,土壤中多壁碳纳米管(MWCNTs)的暴露降低了菲和3-甲基菲在玉米幼苗中的富集,但促进了化合物从根向茎叶的传输[11]。Li等[12]发现,向土壤中添加0.5%的碳纳米管(CNTs)导致六溴环十二烷在蚯蚓(E. fetida)和深土栖类蚯蚓(M. guillelmi)体内的富集量分别下降67.3%和47.4%。这些结果表明,纳米颗粒显著影响共存有机污染物的生物有效性,进而影响污染物被微生物降解、被植物吸收积累和在动物体内富集,从而改变其毒性和对人类潜在的健康风险。因此,研究纳米颗粒对共存有机污染物在土壤中的环境行为和归趋的影响有利于更准确地评价纳米颗粒的生物效应。
综上所述,研究被排放进入土壤的人工纳米颗粒与不同生物体的相互作用对于科学评估其环境效应和生态风险意义重大。本文基于微生物、植物和土壤动物的3个层面,对人工纳米颗粒的生物有效性和毒性进行了讨论。从微生物降解、植物积累和动物富集方面,探讨了纳米颗粒对共存有机污染物生物有效性的影响。
土壤中纳米颗粒的生物效应研究进展
Research progress on the biological effects of nanoparticles in soil
-
摘要: 纳米材料广泛应用于诸多行业,不可避免地导致大量纳米颗粒被排放到环境中。已有许多研究评估了纳米颗粒的生态环境效应和人体健康风险。然而,土壤中纳米颗粒对生物潜在的生态危害和风险仍不明确。重要的是,土壤生物通常同时暴露于纳米颗粒和其他污染物,如重金属和有机污染物。现有文献对真实土壤环境中纳米颗粒与共存有机污染物之间复杂的相互作用及相关生物效应的研究非常有限。本文综述了土壤中纳米颗粒的生物有效性和毒性,特别是纳米颗粒与微生物、植物和蚯蚓等不同生物的相互作用。此外,从不同生物响应水平上探讨了纳米颗粒释放对共存有机污染物生物有效性的影响。最后总结了目前纳米颗粒的生物效应与毒性研究中的不足,后续研究应重点关注纳米颗粒与污染物共暴露的复合毒性效应。Abstract: Widespread applications in various industries will inevitably result in the release of a substantial amount of nanoparticles (NPs) into the environment. Much research has been conducted to assess their health and environmental impacts. However, the potential ecological damages and risks of NPs for soil biota remain largely unclear. Importantly, soil organisms are generally co-exposed to both nanoparticles and additional contaminants, such as heavy metal and organic pollutants (OPs). The existing literature on the complex interactions of nanoparticles with co-existing OPs in real soil environment and the associated biological effects is rather limited. This paper presents an overview on the bioavailability and toxicity of NPs in the soil, and in particular, on their interactions with different organisms, such as microorganisms, plants and earthworms. Moreover, the effects of NPs release on the bioavailability of coexisting OPs to soil biota are also discussed at different level. The deficiencies of existing research on evaluating the biological effects and toxicity of NPs as well as the needs for future research on the joint toxicity of NPs-contaminant co-exposure are summarized.
-
Key words:
- nanoparticles /
- biotoxicity /
- organic pollutants /
- bioavailability /
- soil
-
表 1 纳米颗粒对有机污染物生物有效性的影响
Table 1. Mechanisms and possible effects of nanoparticles on the bioavailability of organic pollutants
纳米颗粒
Nanoparticles暴露 Exposure 污染物
Pollutants生物种类
Organism species生物降解/富集
Biodegradation/
Bioaccumulation机理
Mechanisms参考文献
References浓度
Concentration时间
TimeMWCNTs
O-MWCNTs5、25、
100 mg·L−124 h 阿特拉津 节杆菌属
(Arthrobacter sp.)25 mg·L−1 CNTs提高降解率20%
100 mg·L−1 CNTs降低降解率50%促进作用是CNTs促进细菌生长和降解基因的超表达;抑制作用归因于CNTs的毒性 [92] MWCNTs 25、50、
100 mg·kg−149 d PAHs(菲+芘)100 mg·kg−1 苜蓿根际微生物群落 有机质含量低沙壤土中无显著影响;有机质含量高砂质黏壤土中50 mg·kg−1和100 mg·kg−1CNTs提高降解率9.34%和21% CNTs对PAHs的吸附降低其对低耐受菌种的有效性和毒性;高耐受菌种获取和利用CNTs上吸附态PAHs [93] 富勒烯烟灰
SWCNTs
MWCNTs0.05、0.1、0.5% 14 d 14C-菲
14C-苯并[a]芘50 mg·kg−1假单胞菌属(Pseudomonad sp.) 降解率下降14.4%—80.2% 吸附降低生物有效态(β-环糊精可提取量) [94] MWCNTs 1000 mg·L−1 35 d 14C-菲578 mg·kg−1 嗜甲基菌(Methylophilus methylotrophus sp.) 降解率为2.38%—31.47% 吸附降低生物有效态(Tenax辅助可解吸量) [95] MWCNTs 5% 21 d 14C-菲 农杆菌属
(Agrobacterium sp.)老化21 d和28 d后,21 d降解率分别为90.9%和54.2% 吸附降低生物有效态(XAD-2辅助可解吸量)+降解菌直接获取利用吸附态污染物 [96] 富勒烯烟灰
MWCNTs C600.01、0.1、1% 14 d 14C-菲50 mg·kg−1 土著微生物 降解率下降43.7%—92.3%;
C60无显著影响降低生物有效态,但对微生物活性无
显著影响[97] SWCNTs
OH-/COOH-/MWCNTs50000 mg·L−1 30 d 14C-菲
14C-硝基苯
22 mg·kg−1分枝杆菌
(Mycobacterium vanbaalenii PYR-1)降解率下降31.6%—99% 降低生物有效态(PDMS测定Cfree)+降解菌物理附着于颗粒表面利用吸附态污染物 [98] C60 1670 mg·kg−1 21 d 二氯二苯二氯乙烯p,p’-DDE 南瓜(Cucurbita pepo) 无显著影响 DDE残留物的高风化性(>40 a)和新添加的C60限制了污染物-纳米颗粒的相互作用 [99] MWCNTs 1、10、100、
1000 mg·L−17 d 50 μg·L−1芘 黄瓜(Cucumis sativus L.) 根部富集量降低26.35%—99.23% 纳米颗粒的植物毒性削弱植物对污染物的吸收;吸附降低生物有效态 [100] MWCNTs 50、3000 mg·kg−1 28 d 1-甲基芘 玉米(Zea mays) 富集量降低21.7%—77.4%(芘)和68.6%—100%(1-甲基芘) 纳米颗粒对污染物的强吸附降低生物有效态 [101] MWCNTs 500、1000、
5000 mg·kg−128 d 氯丹
滴滴涕及代谢物DDx西葫芦(Cucurbita pepo)玉米(Zea mays)西红柿(Solanum lycopersicum)大豆(Glycine max) 富集量降低21%—28% 纳米颗粒对有机物的强吸附降低生物有效态 [102] C60 2、15 mg·L−1 4 d 三氯乙烯 美洲黑杨(Populus deltoides) 富集量分别增加−26%和82% 纳米颗粒吸附有机物后被植物吸收 [103] C60 40 mg·(12 g)−1蛭石 21 d 二氯二苯二氯乙烯p,p’-DDE 西葫芦
(Cucurbita pepo L.)
大豆(Glycine max L.)
土豆(Solanum lycopersicum L.)富集量增加30%—65% 纳米颗粒刺穿植物细胞使有机物易进入;吸附有机物后被植物吸收 [104] SiO2
有机蒙脱石10 g·kg−1 45 d 六氯苯
五氯苯水稻(Oryza sativa L.) 无显著影响 [105] TiO2 500、1000、
2000 mg·L−113 d 四环素5、10、
20 mg·L−1水稻(Oryza sativa L.) 富集量降低18.8%—62.5% 纳米颗粒的强吸附降低有机污染物的生物有效态 [106] 镍铁双金属纳米颗粒 30 g·kg−1 14 d 十溴联苯醚10 mg·kg−1 大白菜(Chinese cabbage) 富集量显著降低 纳米颗粒与污染物的联合毒性使植物生长发育减缓,富集能力减弱 [107] 零价铁nZVI 1000 mg·kg−1 28 d 硫丹 距花山姜(Alpinia calcarata)
圣罗勒(Ocimum sanctum)
柠檬草(Cymbopogon citratus)富集量显著降低,7 d内82%的硫丹被清除 纳米颗粒促进根际微生物生长 [108] Ag
CeO2100 mg·kg−1 30 d 吡虫啉10 mg·kg−1 西葫芦(Cucurbita pepo L.) 无显著影响或显著增加富集量 纳米颗粒与有机污染物结合被植物吸收 [109] TiO2
Ag
Al2O3
CNTs5% 25 d PAHs
有机氯农药OCPs
多溴联苯醚PBDE蕹菜(Ipomoea aquatica Forsk)
黄瓜(Cucumis sativus L.)
玉米(Zea mays L.)
菠菜(Spinacia oleracea L.)
南瓜(Cucurbita moschata)富集量显著增加 纳米颗粒吸附有机污染物后共同转移至植物组织 [110] Fe2O3 25 mg(Fe)·L−1 120 h 土霉素100 mg·L−1 水稻(Oryza sativa L.) 显著增加富集水平 纳米颗粒高比表面积吸附污染物,共同转移至植物组织 [111] SWCNTs
MWCNTs0.3、3.0 mg·g−1 28 d 芘 蚯蚓
(Eisenia fetida)0.3 mg·g−1时无显著影响;
3.0 mg·g−1时显著降低富集量低浓度纳米颗粒:芘的高吸附解吸速率导致富集不受影响;高浓度纳米颗粒:强烈吸附污染物降低其生物有效性和富集 [112] C60
MWCNTs300、3000 mg·kg−1 36 d 菲 蚯蚓
(Metaphire guillelmi)300 mg·kg−1时富集量增加30%—40%
3000 mg·kg−1时富集量降低23.6%—27.7%低浓度纳米颗粒增强被土壤吸附或锁定菲的释放和迁移,提高生物有效性;高浓度纳米颗粒增强菲的吸附,降低生物有效性 [113] C60
MWCNTs0.03%、0.3% 14 d 菲
2-甲基菲
3, 6-二甲基菲蚯蚓
(Metaphire guillelmi)不影响或降低菲和甲基菲的富集量;提高二甲基菲的富集量6.1%—25.9% 对菲和甲基菲的强吸附降低生物有效性;纳米颗粒吸附二甲基菲后被蚯蚓摄入,促进生物富集 [114] MWCNTs 0.1、1 g·kg−1 7 d 壬基酚10 mg·kg−1 蚯蚓
(Eisenia fetida)富集量增加 纳米颗粒携带有机物进入肠道细胞 [115] TiO2 500、2500 mg·kg−1 28 d 有机磷阻燃剂TDCIPP 5、
25 mg·kg−1蚯蚓
(Eisenia fetida)无显著影响 吸附TDCIPP的TiO2未被蚯蚓摄入 [116] Ag 500、1000、
2000 mg·kg−114 d 氯丹
二氯二苯二氯乙烯p,p’-DDE蚯蚓
(Eisenia fetida)富集量显著降低8.9%—92.9% 纳米银与污染物的联合毒性降低蚯蚓的富集能力 [117] CuO
ZnO10、50、
250 mg·kg−121 d 五氯硝基苯
100 μg·kg−1蚯蚓
(Eisenia fetida)富集量增大至3.13倍(CuO)和2.47倍(ZnO) 纳米颗粒造成体腔损伤 [118] CuO
ZnO10、50、
250 mg·kg−121 d 联苯菊酯
100 μg·kg−1蚯蚓
(Eisenia fetida)富集量增大至2.65倍(CuO)和3.32倍(ZnO) 纳米颗粒破坏蚯蚓的体腔,造成污染物容易进入 [119] ZnO 125、250 mg·kg−1 28 d 氯吡硫磷 20、
40 mg·kg−1蚯蚓
(Eisenia andrei)富集量显著增加45.5%—65.3% 纳米ZnO降低土壤对污染物的吸附和锁定,提高其生物有效性 [120] -
[1] JANKOVIĆ N Z, PLATA D L. Engineered nanomaterials in the context of global element cycles [J]. Environmental Science:Nano, 2019, 6(9): 2697-2711. doi: 10.1039/C9EN00322C [2] KELLER A A, LAZAREVA A. Predicted releases of engineered nanomaterials: From global to regional to local [J]. Environmental Science & Technology Letters, 2014, 1(1): 65-70. [3] LEFEVRE E, BOSSA N, WIESNER M R, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities [J]. Science of the Total Environment, 2016, 565: 889-901. doi: 10.1016/j.scitotenv.2016.02.003 [4] TRIPATHI D K, SHWETA, SINGH S, et al. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity [J]. Plant Physiology and Biochemistry, 2017, 110: 2-12. doi: 10.1016/j.plaphy.2016.07.030 [5] VELICOGNA J R, RITCHIE E E, SCROGGINS R P, et al. A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils [J]. Nanotoxicology, 2016, 10(8): 1144-1151. doi: 10.1080/17435390.2016.1181807 [6] RICO C M, MAJUMDAR S, DUARTE-GARDEA M, et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain [J]. Journal of Agricultural and Food Chemistry, 2011, 59(8): 3485-3498. doi: 10.1021/jf104517j [7] HOU W C, WESTERHOFF P, POSNER J D. Biological accumulation of engineered nanomaterials: A review of current knowledge [J]. Environmental Science:Processes & Impacts, 2013, 15(1): 103-122. [8] REN X Y, ZENG G M, TANG L, et al. Effect of exogenous carbonaceous materials on the bioavailability of organic pollutants and their ecological risks [J]. Soil Biology and Biochemistry, 2018, 116: 70-81. doi: 10.1016/j.soilbio.2017.09.027 [9] BAGHAIE A H, JABARI A G. Effect of nano Fe-oxide and endophytic fungus (P. indica) on petroleum hydrocarbons degradation in an arsenic contaminated soil under barley cultivation [J]. Journal of Environmental Health Science and Engineering, 2019, 17(2): 853-861. doi: 10.1007/s40201-019-00402-w [10] CUI X Y, JIA F, CHEN Y X, et al. Influence of single-walled carbon nanotubes on microbial availability of phenanthrene in sediment [J]. Ecotoxicology, 2011, 20(6): 1277-1285. doi: 10.1007/s10646-011-0684-3 [11] WANG X L, LIU Y, ZHANG H Y, et al. The impact of carbon nanotubes on bioaccumulation and translocation of phenanthrene, 3-CH3-phenanthrene and 9-NO2-phenanthrene in maize (Zea mays) seedlings [J]. Environmental Science:Nano, 2016, 3(4): 818-829. doi: 10.1039/C6EN00012F [12] LI B, ZHU H K, SUN H W, et al. Effects of the amendment of biochars and carbon nanotubes on the bioavailability of hexabromocyclododecanes (HBCDs) in soil to ecologically different species of earthworms [J]. Environmental Pollution, 2017, 222: 191-200. doi: 10.1016/j.envpol.2016.12.057 [13] UZU G, SOBANSKA S, SARRET G, et al. Foliar lead uptake by lettuce exposed to atmospheric fallouts [J]. Environmental Science & Technology, 2010, 44(3): 1036-1042. [14] HATAMI M, KARIMAN K, GHORBANPOUR M. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants [J]. Science of the Total Environment, 2016, 571: 275-291. doi: 10.1016/j.scitotenv.2016.07.184 [15] LIU Q L, CHEN B, WANG Q L, et al. Carbon nanotubes as molecular transporters for walled plant cells [J]. Nano Letters, 2009, 9(3): 1007-1010. doi: 10.1021/nl803083u [16] LARUE C, PINAULT M, CZARNY B, et al. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed [J]. Journal of Hazardous Materials, 2012, 227/228: 155-163. doi: 10.1016/j.jhazmat.2012.05.033 [17] LARUE C, LAURETTE J, HERLIN-BOIME N, et al. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp. ): Influence of diameter and crystal phase [J]. Science of the Total Environment, 2012, 431: 197-208. doi: 10.1016/j.scitotenv.2012.04.073 [18] KOLE C, KOLE P, RANDUNU K M, et al. Nanobiotechnology can boost crop production and quality: First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia) [J]. BMC Biotechnology, 2013, 13: 37. doi: 10.1186/1472-6750-13-37 [19] MIRALLES P, JOHNSON E, CHURCH T L, et al. Multiwalled carbon nanotubes in alfalfa and wheat: Toxicology and uptake [J]. Journal of the Royal Society Interface, 2012, 9(77): 3514-3527. doi: 10.1098/rsif.2012.0535 [20] MALEJKO J, GODLEWSKA-ŻYŁKIEWICZ B, VANEK T, et al. Uptake, translocation, weathering and speciation of gold nanoparticles in potato, radish, carrot and lettuce crops [J]. Journal of Hazardous Materials, 2021, 418: 126219. doi: 10.1016/j.jhazmat.2021.126219 [21] LV J, CHRISTIE P, ZHANG S Z. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges [J]. Environmental Science:Nano, 2019, 6(1): 41-59. doi: 10.1039/C8EN00645H [22] LI C C, DANG F, LI M, et al. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice [J]. Nanotoxicology, 2017, 11(5): 699-709. doi: 10.1080/17435390.2017.1344740 [23] BEGUM P, IKHTIARI R, FUGETSU B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce [J]. Carbon, 2011, 49(12): 3907-3919. doi: 10.1016/j.carbon.2011.05.029 [24] PRADAS del REAL A E, CASTILLO-MICHEL H, KAEGI R, et al. Fate of Ag-NPs in sewage sludge after application on agricultural soils [J]. Environmental Science & Technology, 2016, 50(4): 1759-1768. [25] HERNANDEZ-VIEZCAS J A, CASTILLO-MICHEL H, ANDREWS J C, et al. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max) [J]. ACS Nano, 2013, 7(2): 1415-1423. doi: 10.1021/nn305196q [26] DIMKPA C O, LATTA D E, MCLEAN J E, et al. Fate of CuO and ZnO nano- and microparticles in the plant environment [J]. Environmental Science & Technology, 2013, 47(9): 4734-4742. [27] WANG P, MENZIES N W, LOMBI E, et al. Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata) [J]. Environmental Science & Technology, 2013, 47(23): 13822-13830. [28] WANG P, MENZIES N W, LOMBI E, et al. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic [J]. Nanotoxicology, 2015, 9(8): 1041-1049. doi: 10.3109/17435390.2014.999139 [29] LIN S J, REPPERT J, HU Q, et al. Uptake, translocation, and transmission of carbon nanomaterials in rice plants [J]. Small, 2009, 5(10): 1128-1132. [30] TRIPATHI S, KAPRI S, DATTA A, et al. Influence of the morphology of carbon nanostructures on the stimulated growth of gram plant [J]. RSC Advances, 2016, 6(50): 43864-43873. doi: 10.1039/C6RA01163B [31] UNRINE J M, TSYUSKO O V, HUNYADI S E, et al. Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles [J]. Journal of Environmental Quality, 2010, 39(6): 1942-1953. doi: 10.2134/jeq2009.0387 [32] LI D, FORTNER J D, JOHNSON D R, et al. Bioaccumulation of 14C60 by the earthworm Eisenia fetida [J]. Environmental Science & Technology, 2010, 44(23): 9170-9175. [33] HOOPER H L, JURKSCHAT K, MORGAN A J, et al. Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix [J]. Environment International, 2011, 37(6): 1111-1117. doi: 10.1016/j.envint.2011.02.019 [34] PETERSEN E J, HUANG Q G, WEBER J. Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida [J]. Environmental Science & Technology, 2008, 42(8): 3090-3095. [35] OUGHTON D H, HERTEL-AAS T, PELLICER E, et al. Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms [J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1883-1887. doi: 10.1897/07-578.1 [36] LAPIED E, NAHMANI J Y, MOUDILOU E, et al. Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil [J]. Environment International, 2011, 37(6): 1105-1110. doi: 10.1016/j.envint.2011.01.009 [37] BACCARO M, van den BERG J H J, van den BRINK N W. Are long-term exposure studies needed?Short-term toxicokinetic model predicts the uptake of metal nanoparticles in earthworms after nine months [J]. Ecotoxicology and Environmental Safety, 2021, 220: 112371. doi: 10.1016/j.ecoenv.2021.112371 [38] COURTOIS P, RORAT A, LEMIERE S, et al. Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals [J]. Environmental Pollution, 2019, 253: 578-598. doi: 10.1016/j.envpol.2019.07.053 [39] LI S B, IRIN F, ATORE F O, et al. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique [J]. Science of the Total Environment, 2013, 445/446: 9-13. doi: 10.1016/j.scitotenv.2012.12.037 [40] 王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展 [J]. 环境科学, 2010, 31(6): 1409-1418. doi: 10.13227/j.hjkx.2010.06.018 WANG Z Y, ZHAO J, LI N, et al. Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms [J]. Environmental Science, 2010, 31(6): 1409-1418(in Chinese). doi: 10.13227/j.hjkx.2010.06.018
[41] SCHWAB F, ZHAI G S, KERN M, et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants - Critical review [J]. Nanotoxicology, 2016, 10(3): 257-278. doi: 10.3109/17435390.2015.1048326 [42] JIANG W, WANG Q, QU X L, et al. Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes [J]. Science of the Total Environment, 2017, 574: 771-780. doi: 10.1016/j.scitotenv.2016.09.150 [43] LIU Q L, ZHAO Y Y, WAN Y L, et al. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level [J]. ACS Nano, 2010, 4(10): 5743-5748. doi: 10.1021/nn101430g [44] BEGUM P, FUGETSU B. Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions [J]. Journal of Hazardous Materials, 2013, 260: 1032-1041. doi: 10.1016/j.jhazmat.2013.06.063 [45] PATLOLLA A K, BERRY A, MAY L, et al. Genotoxicity of silver nanoparticles in Vicia faba: A pilot study on the environmental monitoring of nanoparticles [J]. International Journal of Environmental Research and Public Health, 2012, 9(5): 1649-1662. doi: 10.3390/ijerph9051649 [46] BARBOLINA I, WOODS C R, LOZANO N, et al. Purity of graphene oxide determines its antibacterial activity [J]. 2D Materials, 2016, 3(2): 025025. doi: 10.1088/2053-1583/3/2/025025 [47] DIMKPA C O, MCLEAN J E, LATTA D E, et al. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat [J]. Journal of Nanoparticle Research, 2012, 14(9): 1125. doi: 10.1007/s11051-012-1125-9 [48] KARLSSON H L, CRONHOLM P, GUSTAFSSON J, et al. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes [J]. Chemical Research in Toxicology, 2008, 21(9): 1726-1732. doi: 10.1021/tx800064j [49] DENG R, LIN D H, ZHU L Z, et al. Nanoparticle interactions with co-existing contaminants: Joint toxicity, bioaccumulation and risk [J]. Nanotoxicology, 2017, 11(5): 591-612. doi: 10.1080/17435390.2017.1343404 [50] YU S J, LIU J F, YIN Y G, et al. Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects [J]. Journal of Environmental Sciences, 2018, 63: 198-217. doi: 10.1016/j.jes.2017.06.021 [51] BAI Y, WANG C Y, GAO J J, et al. A study on dispersion and antibacterial activity of functionalizing multi-walled carbon nanotubes with mixed surfactant [J]. Journal of Surfactants and Detergents, 2015, 18(6): 957-964. doi: 10.1007/s11743-015-1729-z [52] BAI Y, PARK I S, LEE S J, et al. Effect of AOT-assisted multi-walled carbon nanotubes on antibacterial activity [J]. Colloids and Surfaces B:Biointerfaces, 2012, 89: 101-107. doi: 10.1016/j.colsurfb.2011.09.001 [53] MAURER-JONES M A, GUNSOLUS I L, MURPHY C J, et al. Toxicity of engineered nanoparticles in the environment [J]. Analytical Chemistry, 2013, 85(6): 3036-3049. doi: 10.1021/ac303636s [54] LIU S B, ZENG T H, HOFMANN M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress [J]. ACS Nano, 2011, 5(9): 6971-6980. doi: 10.1021/nn202451x [55] ARIAS L R, YANG L J. Inactivation of bacterial pathogens by carbon nanotubes in suspensions [J]. Langmuir, 2009, 25(5): 3003-3012. doi: 10.1021/la802769m [56] AUFFAN M, ACHOUAK W, ROSE J, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli [J]. Environmental Science & Technology, 2008, 42(17): 6730-6735. [57] SIMONIN M, RICHAUME A. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: A review [J]. Environmental Science and Pollution Research, 2015, 22(18): 13710-13723. doi: 10.1007/s11356-015-4171-x [58] ZHANG H Y, WU F, CHEN W X, et al. Carbon nanomaterials differentially impact mineralization kinetics of phenanthrene and indigenous microbial communities in a natural soil [J]. NanoImpact, 2018, 11: 146-155. doi: 10.1016/j.impact.2018.08.001 [59] REN W J, REN G D, TENG Y, et al. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community [J]. Journal of Hazardous Materials, 2015, 297: 286-294. doi: 10.1016/j.jhazmat.2015.05.017 [60] CHUNG H, KIM M J, KO K, et al. Effects of graphene oxides on soil enzyme activity and microbial biomass [J]. Science of the Total Environment, 2015, 514: 307-313. doi: 10.1016/j.scitotenv.2015.01.077 [61] JIN L X, SON Y, YOON T K, et al. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass [J]. Ecotoxicology and Environmental Safety, 2013, 88: 9-15. doi: 10.1016/j.ecoenv.2012.10.031 [62] KUMAR N, SHAH V, WALKER V K. Perturbation of an arctic soil microbial community by metal nanoparticles [J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 816-822. [63] GE Y, SCHIMEL J P, HOLDEN P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities [J]. Environmental Science & Technology, 2011, 45(4): 1659-1664. [64] SHAN J, JI R, YU Y J, et al. Biochar, activated carbon and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil [J]. Scientific Reports, 2015, 5: 16000. doi: 10.1038/srep16000 [65] CHUNG H, SON Y, YOON T K, et al. The effect of multi-walled carbon nanotubes on soil microbial activity [J]. Ecotoxicology and Environmental Safety, 2011, 74(4): 569-575. doi: 10.1016/j.ecoenv.2011.01.004 [66] WU F, YOU Y Q, ZHANG X Y, et al. Effects of various carbon nanotubes on soil bacterial community composition and structure [J]. Environmental Science & Technology, 2019, 53(10): 5707-5716. [67] BEGUM P, FUGETSU B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant [J]. Journal of Hazardous Materials, 2012, 243: 212-222. doi: 10.1016/j.jhazmat.2012.10.025 [68] MA X M, GEISER-LEE J, DENG Y, et al. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation [J]. Science of the Total Environment, 2010, 408(16): 3053-3061. doi: 10.1016/j.scitotenv.2010.03.031 [69] GEISLER-LEE J, WANG Q, YAO Y, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana [J]. Nanotoxicology, 2012, 7(3): 323-337. doi: 10.3109/17435390.2012.658094 [70] LIN D H, XING B S. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth [J]. Environmental Pollution, 2007, 150(2): 243-250. doi: 10.1016/j.envpol.2007.01.016 [71] ASLI S, NEUMANN P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport [J]. Plant, Cell & Environment, 2009, 32(5): 577-584. [72] KHODAKOVSKAYA M V, de SILVA K, BIRIS A S, et al. Carbon nanotubes induce growth enhancement of tobacco cells [J]. ACS Nano, 2012, 6(3): 2128-2135. doi: 10.1021/nn204643g [73] WANG X P, HAN H Y, LIU X Q, et al. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants [J]. Journal of Nanoparticle Research, 2012, 14(6): 841. doi: 10.1007/s11051-012-0841-5 [74] HUSEN A, SIDDIQI K S. Carbon and fullerene nanomaterials in plant system [J]. Journal of Nanobiotechnology, 2014, 12: 16. doi: 10.1186/1477-3155-12-16 [75] HU X G, LU K C, MU L, et al. Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders [J]. Carbon, 2014, 80: 665-676. doi: 10.1016/j.carbon.2014.09.010 [76] YIN L Y, CHENG Y W, ESPINASSE B, et al. More than the ions: The effects of silver nanoparticles on Lolium multiflorum [J]. Environmental Science & Technology, 2011, 45(6): 2360-2367. [77] HU X G, ZHOU Q X. Health and ecosystem risks of graphene [J]. Chemical Reviews, 2013, 113(5): 3815-3835. doi: 10.1021/cr300045n [78] YANG K, WAN J M, ZHANG S, et al. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power [J]. Biomaterials, 2012, 33(7): 2206-2214. doi: 10.1016/j.biomaterials.2011.11.064 [79] ZHANG L J, HU C W, WANG W L, et al. Acute toxicity of multi-walled carbon nanotubes, sodium pentachlorophenate, and their complex on earthworm Eisenia fetida [J]. Ecotoxicology and Environmental Safety, 2014, 103: 29-35. doi: 10.1016/j.ecoenv.2014.01.041 [80] WANG J F, WAGES M, YU S Y, et al. Bioaccumulation of fullerene (C60) and corresponding catalase elevation in Lumbriculus variegatus [J]. Environmental Toxicology and Chemistry, 2014, 33(5): 1135-1141. doi: 10.1002/etc.2540 [81] CALISI A, GRIMALDI A, LEOMANNI A, et al. Multibiomarker response in the earthworm Eisenia fetida as tool for assessing multi-walled carbon nanotube ecotoxicity [J]. Ecotoxicology, 2016, 25(4): 677-687. doi: 10.1007/s10646-016-1626-x [82] van der PLOEG M J C, HANDY R D, HECKMANN L H, et al. C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus [J]. Nanotoxicology, 2013, 7(4): 432-440. doi: 10.3109/17435390.2012.668569 [83] LANKADURAI B P, NAGATO E G, SIMPSON A J, et al. Analysis of Eisenia fetida earthworm responses to sub-lethal C60 nanoparticle exposure using 1H-NMR based metabolomics [J]. Ecotoxicology and Environmental Safety, 2015, 120: 48-58. doi: 10.1016/j.ecoenv.2015.05.020 [84] WANG H H, WICK R L, XING B S. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans [J]. Environmental Pollution, 2009, 157(4): 1171-1177. doi: 10.1016/j.envpol.2008.11.004 [85] van der PLOEG M J C, BAVECO J M, van der HOUT A, et al. Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics [J]. Environmental Pollution, 2011, 159(1): 198-203. doi: 10.1016/j.envpol.2010.09.003 [86] MCSHANE H, SARRAZIN M, WHALEN J K, et al. Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil [J]. Environmental Toxicology and Chemistry, 2012, 31(1): 184-193. doi: 10.1002/etc.714 [87] ZHANG H Y, VIDONISH J, LV W, et al. Differential histological, cellular and organism-wide response of earthworms exposed to multi-layer graphenes with different morphologies and hydrophobicity [J]. Environmental Pollution, 2020, 263: 114468. doi: 10.1016/j.envpol.2020.114468 [88] 曹圣来. 典型纳米金属氧化物对不同类型土壤中蚯蚓、小麦的毒性效应[D]. 南京: 南京大学, 2015. CAO S L. Toxicology of metal oxide nanoparticles on earthworm and wheat in different types of soils[D]. Nanjing: Nanjing University, 2015(in Chinese).
[89] JOHNSEN A R, WICK L Y, HARMS H. Principles of microbial PAH-degradation in soil [J]. Environmental Pollution, 2005, 133(1): 71-84. doi: 10.1016/j.envpol.2004.04.015 [90] ERSAN G, APUL O G, PERREAULT F, et al. Adsorption of organic contaminants by graphene nanosheets: A review [J]. Water Research, 2017, 126: 385-398. doi: 10.1016/j.watres.2017.08.010 [91] YANG K, XING B S. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water [J]. Environmental Pollution, 2007, 145(2): 529-537. doi: 10.1016/j.envpol.2006.04.020 [92] ZHANG C D, LI M Z, XU X, et al. Effects of carbon nanotubes on atrazine biodegradation by Arthrobacter sp [J]. Journal of Hazardous Materials, 2015, 287: 1-6. doi: 10.1016/j.jhazmat.2015.01.039 [93] SHRESTHA B, ANDERSON T A, ACOSTA-MARTINEZ V, et al. The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere [J]. Ecotoxicology and Environmental Safety, 2015, 116: 143-149. doi: 10.1016/j.ecoenv.2015.03.005 [94] TOWELL M G, BROWNE L A, PATON G I, et al. Impact of carbon nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil [J]. Environmental Pollution, 2011, 159(3): 706-715. doi: 10.1016/j.envpol.2010.11.040 [95] XIA X H, ZHOU C H, HUANG J H, et al. Mineralization of phenanthrene sorbed on multiwalled carbon nanotubes [J]. Environmental Toxicology and Chemistry, 2013, 32(4): 894-901. doi: 10.1002/etc.2125 [96] XIA X H, LI Y R, ZHOU Z, et al. Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium [J]. Chemosphere, 2010, 78(11): 1329-1336. doi: 10.1016/j.chemosphere.2010.01.007 [97] OYELAMI A O, SEMPLE K T. The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil [J]. Environmental Science:Processes & Impacts, 2015, 17(7): 1302-1310. [98] ZHANG M, SHEN X F, ZHANG H Y, et al. Bioavailability of phenanthrene and nitrobenzene sorbed on carbonaceous materials [J]. Carbon, 2016, 110: 404-413. doi: 10.1016/j.carbon.2016.09.044 [99] KELSEY J W, WHITE J C. Effect of C60 fullerenes on the accumulation of weathered p, p'-DDE by plant and earthworm species under single and multispecies conditions [J]. Environmental Toxicology and Chemistry, 2013, 32(5): 1117-1123. doi: 10.1002/etc.2158 [100] SHEN X F, LI S L, ZHANG H Y, et al. Effect of multiwalled carbon nanotubes on uptake of pyrene by cucumber (Cucumis sativus L.): Mechanistic perspectives [J]. NanoImpact, 2018, 10: 168-176. doi: 10.1016/j.impact.2018.05.001 [101] ZHANG H Y, LIU Y, SHEN X F, et al. Influence of multiwalled carbon nanotubes and sodium dodecyl benzene sulfonate on bioaccumulation and translocation of pyrene and 1-methylpyrene in maize (Zea mays) seedlings [J]. Environmental Pollution, 2017, 220: 1409-1417. doi: 10.1016/j.envpol.2016.10.093 [102] de la TORRE-ROCHE R, HAWTHORNE J, DENG Y Q, et al. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants [J]. Environmental Science & Technology, 2013, 47(21): 12539-12547. [103] MA X M, WANG C. Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems [J]. Environmental Engineering Science, 2010, 27(11): 989-992. doi: 10.1089/ees.2010.0141 [104] de la TORRE-ROCHE R, HAWTHORNE J, DENG Y Q, et al. Fullerene-enhanced accumulation of p, p'-DDE in agricultural crop species [J]. Environmental Science & Technology, 2012, 46(17): 9315-9323. [105] LIU C Y, JIANG X, MA Y C, et al. Pollutant and soil types influence effectiveness of soil-applied absorbents in reducing rice plant uptake of persistent organic pollutants [J]. Pedosphere, 2017, 27(3): 537-547. doi: 10.1016/S1002-0160(17)60349-7 [106] MA C X, LIU H, CHEN G C, et al. Effects of titanium oxide nanoparticles on tetracycline accumulation and toxicity in Oryza sativa (L. ) [J]. Environmental Science:Nano, 2017, 4(9): 1827-1839. doi: 10.1039/C7EN00280G [107] WU J, XIE Y Y, FANG Z Q, et al. Effects of Ni/Fe bimetallic nanoparticles on phytotoxicity and translocation of polybrominated diphenyl ethers in contaminated soil [J]. Chemosphere, 2016, 162: 235-242. doi: 10.1016/j.chemosphere.2016.07.101 [108] PILLAI H P S, KOTTEKOTTIL J. Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles [J]. Journal of Environmental Protection, 2016, 7(5): 734-744. doi: 10.4236/jep.2016.75066 [109] de la TORRE ROCHE R, PAGANO L, MAJUMDAR S, et al. Co-exposure of imidacloprid and nanoparticle Ag or CeO2 to Cucurbita pepo (zucchini): Contaminant bioaccumulation and translocation [J]. NanoImpact, 2018, 11: 136-145. doi: 10.1016/j.impact.2018.07.001 [110] WU X, WANG W, ZHU L Z. Enhanced organic contaminants accumulation in crops: Mechanisms, interactions with engineered nanomaterials in soil [J]. Environmental Pollution, 2018, 240: 51-59. doi: 10.1016/j.envpol.2018.04.072 [111] BAO Y Y, MA C X, HU L, et al. Effect of individual and combined exposure of Fe2O3 nanoparticles and oxytetracycline on their bioaccumulation by rice (Oryza sativa L. ) [J]. Journal of Soils and Sediments, 2019, 19(5): 2459-2471. doi: 10.1007/s11368-018-2216-8 [112] PETERSEN E J, PINTO R A, LANDRUM P F, et al. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms [J]. Environmental Science & Technology, 2009, 43(11): 4181-4187. [113] ZHANG H Y, CHEN W X, SHEN X F, et al. Influence of multi-walled carbon nanotubes and fullerenes on the bioaccumulation and elimination kinetics of phenanthrene in geophagous earthworms (Metaphire guillelmi) [J]. Environmental Science:Nano, 2017, 4(9): 1887-1899. doi: 10.1039/C7EN00118E [114] ZHANG H Y, CHEN W X, ZHANG X Y, et al. Carbon nanomaterials differentially impact bioaccumulation and oxidative response of phenanthrene and methyl derivatives in geophagous earthworms (Metaphire guillelmi): A multi-contaminant exposure study [J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6537-6544. doi: 10.1016/j.jece.2018.10.007 [115] HU C W, CAI Y, WANG W L, et al. Toxicological effects of multi-walled carbon nanotubes adsorbed with nonylphenol on earthworm Eisenia fetida [J]. Environmental Science:Processes & Impacts, 2013, 15(11): 2125-2130. [116] ZHU Y, WU X Y, LIU Y X, et al. Synergistic growth inhibition effect of TiO2 nanoparticles and tris(1, 3-dichloro-2-propyl) phosphate on earthworms in soil [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111462. doi: 10.1016/j.ecoenv.2020.111462 [117] MUKHERJEE A, HAWTHORNE J, WHITE J C, et al. Nanoparticle silver coexposure reduces the accumulation of weathered persistent pesticides by earthworms [J]. Environmental Toxicology and Chemistry, 2017, 36(7): 1864-1871. doi: 10.1002/etc.3698 [118] LI M, XU G H, GUO N, et al. Influences and mechanisms of nanoparticles on pentachloronitrobenzene accumulation by earthworms [J]. Environmental Science and Pollution Research, 2021: 1-9. [119] LI M, XU G H, YANG X T, et al. Metal oxide nanoparticles facilitate the accumulation of bifenthrin in earthworms by causing damage to body cavity [J]. Environmental Pollution, 2020, 263: 114629. doi: 10.1016/j.envpol.2020.114629 [120] GARCÍA-GÓMEZ C, BABÍN M, GARCÍA S, et al. Joint effects of zinc oxide nanoparticles and chlorpyrifos on the reproduction and cellular stress responses of the earthworm Eisenia andrei [J]. Science of the Total Environment, 2019, 688: 199-207. doi: 10.1016/j.scitotenv.2019.06.083 [121] YANG Y, HUNTER W, TAO S, et al. Microbial availability of different forms of phenanthrene in soils [J]. Environmental Science & Technology, 2009, 43(6): 1852-1857. [122] YANG Y, SHU L, WANG X L, et al. Effects of composition and domain arrangement of biopolymer components of soil organic matter on the bioavailability of phenanthrene [J]. Environmental Science & Technology, 2010, 44(9): 3339-3344. [123] CONGIU E, ORTEGA-CALVO J J. Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons [J]. Environmental Science & Technology, 2014, 48(18): 10869-10877. [124] PACWA-PŁOCINICZAK M, PŁAZA G A, PIOTROWSKA-SEGET Z, et al. Environmental applications of biosurfactants: Recent advances [J]. International Journal of Molecular Sciences, 2011, 12(1): 633-654. doi: 10.3390/ijms12010633 [125] KUŚMIERZ M, OLESZCZUK P, KRASKA P, et al. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil [J]. Chemosphere, 2016, 146: 272-279. doi: 10.1016/j.chemosphere.2015.12.010 [126] CÁCERES-WENZEL M I, FUCHS J S, BERNASSANI F N, et al. Combined effects of goethite nanoparticles with metallic contaminants and an organophosphorus pesticide on Eisenia andrei [J]. Environmental Science and Pollution Research, 2020, 27(16): 20066-20075. doi: 10.1007/s11356-020-08547-0 [127] ZHANG C, WANG S H, LV Z, et al. NanoFe3O4 accelerates anoxic biodegradation of 3, 5, 6-trichloro-2-pyridinol [J]. Chemosphere, 2019, 235: 185-193. doi: 10.1016/j.chemosphere.2019.06.114