-
近年来,大气污染问题备受瞩目,已成为影响人们日常生活的重要因素。尤其是细颗粒物(PM2.5),由于其自身特性,易携带重金属、细菌和病毒等有害物质,对人体健康和生态环境造成了极大威胁[1-4],同时由于其具有光学特性,对太阳辐射强迫和气候变化也有重要影响[5]。研究者对国内多数大城市的PM2.5污染特征与成因进行了深入研究,对中小城市的研究也已全面起步,对PM2.5的组成结构[6-7]、形貌特征[8]、形成机制[9]和污染来源[10-11]等已经有了全面认识。城市大气环境中PM2.5的形成同时受本地污染源排放和区域传输的双重影响,区域传输受风速风向、逆温、湿度和边界层高度等气象条件影响显著[12],本地排放受燃煤、工业生产、机动车和扬尘等贡献突出[13]。各类污染源除直接排放一次PM2.5外,其排放的SO2、NOx、NH3和VOCs等气态前体物还可通过复杂的物理化学反应形成二次污染,二次无机离子(SNA,SNA=SO42−+NO3−+NH4+)和二次有机碳(SOC)均为PM2.5的主要组成部分[6,14],二次组分可占PM2.5的47%~63%[11]。随着我国大气污染治理工作的深入推进,SO2、NOx及一次PM2.5的排放得到有效控制,但二次污染问题日益凸显,VOCs、NH3和温室气体等逐渐成为影响城市大气环境的主要因素,PM2.5与臭氧协同控制、碳减排等区域性环境问题使当今大气污染防治工作面临着新一轮挑战[15-16]。
盐城市位于江苏沿海中部,是国家沿海发展和长三角一体化两大战略的交汇点,社会经济发展位居江苏中位,并处稳步前进阶段。但目前有关江苏省的大气污染研究中,针对盐城市的研究极少。2017年10月底至11月初我国北方地区发生一次区域性PM2.5重污染过程,本研究通过手工采集的方法捕获了盐城市此次污染过程,分析了PM2.5质量浓度以及水溶性离子、碳质组分等污染特征,并采用物质平衡法重构PM2.5,运用主成分分析法(PCA)分析PM2.5的主要来源,以此探究此次污染过程中PM2.5构成的变化规律,可为研究盐城市PM2.5污染成因和来源提供参考。
盐城市秋季典型PM2.5污染过程的组分及来源特征
Characteristics of composition and pollution source during a typical PM2.5 pollution period in autumn of Yancheng
-
摘要: 为探究盐城市大气环境PM2.5污染特征,于2017年10月29日~11月5日对一次典型PM2.5污染过程进行了监测采样,分析了水溶性离子、碳质组分等成分的污染特征以及PM2.5主要来源。结果表明,PM2.5浓度整体呈典型的倒V字型变化特征,平均质量浓度为(55.7±43.9) μg/m3,处于二级良的水平。各化学组分中,水溶性离子总质量浓度平均值为(30.5±32.2) μg/m3,占PM2.5的48.5%,其中SNA为主要成分,平均占PM2.5的42.7%;NO3−/SO42−的平均值为1.91,表明移动源对此次污染过程的贡献大于固定源;碳质组分OC/EC的平均值为7.0,表明存在明显的二次有机污染过程,其中SOC平均占OC的71.0%,占PM2.5的9.5%。PM2.5组分重构及主成分分析结果表明,二次转化是形成此次污染的主要原因,燃煤源、交通源、工业生产、扬尘源以及生物质燃烧源为主要贡献源。Abstract: In order to explore the pollution characteristics of atmospheric PM2.5 in Yancheng, a typical PM2.5 pollution process was monitored and sampled from October 29th to November 4th, 2017. The pollution characteristics of water-soluble ions and carbon components and the main sources of PM2.5 were analyzed. The results showed that PM2.5 concentration presented a typical inverted V-shaped change characteristic with average mass concentration of (55.7±43.9) μg/m3, which was in the level of the second stage denoted a good air quality. Among various components, the average mass concentration of water-soluble inorganic ions was (30.5±32.2) μg/m3, accounting for 48.5% of PM2.5 with SNA as the main component accounting for 42.7%. The average value of NO3−/SO42− was 1.91, thus indicating that mobile pollution sources contributed more to the pollution process than stationary pollution sources. The average value of OC/EC was 7.0, thus indicating there was an obvious secondary organic pollution process with the SOC accounted for 71.0% and 9.5% of OC and PM2.5. The results of PM2.5 component reconstruction and principal component analysis showed that the secondary transformation mainly caused the pollution process. It can be found that coal burning, traffic, industrial production, dust and biomass combustion as the main contributing sources.
-
Key words:
- PM2.5 /
- water-soluble ions /
- carbonaceous component /
- secondary transformation /
- Yancheng
-
表 1 PM2.5中主成分旋转因子载荷矩阵
组分 主成分1 主成分2 主成分3 主成分4 OC 0.899 −0.031 0.092 0.380 EC 0.962 0.017 0.064 0.256 Cl− 0.227 −0.361 0.184 0.795 NO3− 0.916 0.286 0.226 0.120 SO42− 0.923 0.121 0.343 −0.088 NH4+ 0.919 0.262 0.235 0.163 Na+ 0.642 0.330 0.651 0.220 K+ 0.947 0.102 0.166 0.251 Mg2+ 0.191 −0.183 0.890 −0.299 Ca2+ 0.519 −0.021 0.776 0.349 Al −0.401 0.085 −0.546 −0.353 Si 0.130 0.023 −0.019 0.819 Ti −0.260 0.602 −0.081 −0.720 Fe 0.462 0.826 0.041 −0.085 V 0.374 0.259 0.827 0.268 Cr 0.824 0.458 0.261 0.024 Mn 0.452 0.849 0.066 0.265 Ni 0.673 0.616 0.300 0.272 Cu −0.291 −0.227 0.689 −0.590 Zn 0.546 0.620 0.212 0.459 As −0.226 0.942 −0.160 −0.151 Cd 0.113 0.956 −0.031 −0.227 Pb 0.298 0.934 −0.010 −0.153 特征值 8.407 5.990 3.816 3.406 贡献率/% 36.551 26.044 16.592 14.809 累计贡献/% 36.551 62.595 79.186 93.995 -
[1] 陈晨, 仲宇, 刘园园, 等. 2013—2018年北京市大气PM2.5持续高暴露对居民因病入院的急性影响[J]. 环境科学研究, 2021, 34(1): 213 − 219. [2] 张梦娇, 苏方成, 徐起翔, 等. 2013~2017年中国PM2.5污染防治的健康效益评估[J]. 环境科学, 2021, 42(2): 513 − 522. [3] COHEN A J, BRAUER M, BURNETT R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015[J]. The Lancet, 2017, 389(10082): 1907 − 1918. doi: 10.1016/S0140-6736(17)30505-6 [4] APTE J S, MARSHALL J D, COHEN A J, et al. Addressing global mortality from ambient PM2.5[J]. Environmental Science Technology, 2015, 49(13): 8057 − 8066. doi: 10.1021/acs.est.5b01236 [5] STIER P, SEINFELD J, KINNE S, et al. Aerosol absorption and radiative forcing[J]. Atmospheric Chemistry and Physics, 2007, 7(19): 5237 − 5261. doi: 10.5194/acp-7-5237-2007 [6] 李欢, 唐贵谦, 张军科, 等. 2017~2018年北京大气PM2.5中水溶性无机离子特征[J]. 环境科学, 2020, 41(10): 4364 − 4373. [7] 徐足飞, 曹芳, 高嵩, 等. 南京北郊秋季PM2.5碳质组分污染特征及来源分析[J]. 环境科学, 2018, 39(7): 3033 − 3041. [8] 赵承美, 邵龙义, 侯聪, 等. 北京、郑州和深圳三城市空气中气溶胶单颗粒特征的扫描电镜分析[J]. 岩石矿物学杂志, 2015, 34(6): 925 − 931. doi: 10.3969/j.issn.1000-6524.2015.06.018 [9] 贾佳, 丛怡, 高清敏, 等. 中原城市冬季两次重污染形成机制及来源[J]. 环境科学, 2020, 41(12): 5256 − 5266. [10] DU W J, ZHANG Y R, CHEN Y T, et al. Chemical characterization and source apportionment of PM2.5 during spring and winter in the Yangtze River Delta, China[J]. Aerosol and Air Quality Research, 2017, 17(9): 2165 − 2180. doi: 10.4209/aaqr.2017.03.0108 [11] QIAO X, YING Q, LI X H, et al. Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model[J]. Science of the Total Environment, 2018, 612: 462 − 471. doi: 10.1016/j.scitotenv.2017.08.272 [12] 韩博威, 马晓燕. 2014—2018年冬季长三角强霾事件及天气形势影响分析[J]. 环境科学学报, 2020, 40(7): 2333 − 2345. [13] ZHENG B, TONG D, LI M, et al. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14095 − 14111. doi: 10.5194/acp-18-14095-2018 [14] 叶招莲, 刘佳澍, 李清, 等. 常州夏秋季PM2.5中碳质气溶胶特征及来源[J]. 环境科学, 2017, 38(11): 4469 − 4477. [15] 王韵杰, 张少君, 郝吉明. 中国大气污染治理: 进展·挑战·路径[J]. 环境科学研究, 2019, 32(10): 1755 − 1762. [16] 李红, 彭良, 毕方, 等. 我国PM2.5与臭氧污染协同控制策略研究[J]. 环境科学研究, 2019, 32(10): 1763 − 1778. [17] WANG H B, TIAN M, LI X H, et al. Chemical composition and light extinction contribution of PM2.5 in urban Beijing for a 1-year period[J]. Aerosol and Air Quality Research, 2015, 15(6): 2200 − 2211. doi: 10.4209/aaqr.2015.04.0257 [18] CHOW J C, WATSON J G, LU Z Q, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX[J]. Atmospheric Environment, 1996, 30(12): 2079 − 2112. doi: 10.1016/1352-2310(95)00402-5 [19] XING L, FU T M, CAO J J, et al. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols[J]. Atmospheric Chemistry and Physics, 2013, 13(8): 4307 − 4318. doi: 10.5194/acp-13-4307-2013 [20] 罗干, 王体健, 赵明, 等. 基于在线监测的南京仙林PM2.5组分特征与来源解析[J]. 中国环境科学, 2020, 40(5): 1857 − 1868. doi: 10.3969/j.issn.1000-6923.2020.05.001 [21] 蒋荣, 严飞, 杨杰, 等. 南通市冬季PM2.5中水溶性离子污染特征[J]. 环境监控与预警, 2020, 12(2): 45 − 48. doi: 10.3969/j.issn.1674-6732.2020.02.009 [22] 范美益, 曹芳, 张园园, 等. 徐州市冬季大气细颗粒物水溶性无机离子污染特征及来源解析[J]. 环境科学, 2017, 38(11): 4478 − 4485. [23] 马红璐, 赵欣, 陆建刚, 等. 宿迁市PM2.5中水溶性无机离子的季节特征和来源分析[J]. 环境科学, 2020, 41(9): 3899 − 3907. [24] 程渊, 吴建会, 毕晓辉, 等. 武汉市大气PM2.5中水溶性离子污染特征及来源[J]. 环境科学学报, 2019, 39(1): 189 − 196. [25] 鲍秋阳, 王毅勇, 张学磊, 等. 吉林市大气PM2.5污染特征及来源分析[J]. 环境保护科学, 2018, 44(3): 74 − 79. [26] 赵晓亮, 岳阳霞, 许端平, 等. 阜新市秋冬季节PM2.5中无机元素污染特征及来源[J]. 中国环境科学, 2020, 40(10): 4247 − 4258. doi: 10.3969/j.issn.1000-6923.2020.10.007 [27] 崔巧丽, 王京伟, 肖强, 等. 采暖季延庆城区大气PM2.5中金属元素污染特征及来源分析[J]. 环境保护科学, 2019, 45(6): 71 − 75. [28] 张晓茹, 孔少飞, 银燕, 等. 亚青会期间南京大气PM2.5中重金属来源及风险[J]. 中国环境科学, 2016, 36(1): 1 − 11. doi: 10.3969/j.issn.1000-6923.2016.01.001 [29] TAIWO A M, HARRISON R M, SHI Z. A review of receptor modeling of industrially emitted particulate matter[J]. Atmospheric Environment, 2014, 97: 109 − 120. doi: 10.1016/j.atmosenv.2014.07.051