-
在短程硝化反硝化、同步硝化反硝化、厌氧氨氧化等[1]非传统生物脱氮工艺的生物脱氮系统中,氨化菌会在好氧条件下将有机氮转化为氨氮(
${\rm{NH}}_4^{+} $ -N),然后氨氧化菌(ammonia-oxidizing bacteria,AOB)和亚硝酸盐氧化菌(nitrite-oxidizing bacteria,NOB)会协同作用将氨氮(${\rm{NH}}_4^{+} $ -N)转化为硝态氮(${\rm{NO}}_3^{-} $ -N)。该协同作用的过程即AOB先将${\rm{NH}}_4^{+} $ -N氧化为亚硝态氮(${\rm{NO}}_2^{-} $ -N),NOB再将${\rm{NO}}_2^{-} $ -N进一步氧化为${\rm{NO}}_3^{-} $ -N[2]。其中,NOB为革兰氏阴性菌,是自养微生物,其适宜的生长温度为25~30 ℃[3]。在好氧条件下,NOB以CO2为碳源参与硝化反应,以氧气和硝酸盐为电子受体进行亚硝酸盐的氧化。此外,NOB还可利用其他能源参与微生物的代谢活动,如NOB作为专性氧化菌以甲酸、硫化物或其他有机化合物为底物发生代谢反应[4]。根据微生物的形态特征和细胞内膜的排列方式,NOB可划分为7个属:硝化杆菌属(Nitrobacter)、硝化球菌属(Nitrococcus)、硝化刺菌属(Nitrospina)、硝化螺菌属(Nitrospira)、Nitrotoga属、Candidatus Nitromaritima属和Nitrolancea属[5]。其中,Nitrobacter和Nitrospira是污水生物处理系统中的主导NOB[6]。在高溶解氧、高底物浓度条件下,Nitrobacter含量远高于Nitrospira,而在低溶解氧和低基质底物浓度条件下,Nitrospira为优势菌属[7-8]。温度是硝化反应过程重要的影响因素之一。以溶解氧(dissolved oxygen,DO)和总氨氮(total ammonia nitrogen,TAN)为限制条件,当温度每升高1℃(在20 ℃基础上)时,硝化速率可分别提高1.108%和4.275%[9]。陈翠忠等[10]采用缺氧-好氧SBR处理合成废水时发现,当温度从15 ℃升至25 ℃时,氨氮去除率随之升高;当温度从25 ℃升至35 ℃时,氨氮去除率却逐渐降低。TAYLOR等[11]在测定
${\rm{NO}}_2^{-} $ 氧化动力学参数时发现,反应温度为30 ℃时的最大反应速率(Vmax)大于17 ℃时的Vmax。于雪等[12-13]发现:当温度较低时,微生物细胞膜呈凝胶状,水分和营养物质跨膜运输受阻,此时的细胞因缺乏营养而停止生命活动,反应速率随之降低;随着温度的升高,生化反应速率逐渐恢复并加快,且当温度超过一定范围后,细菌体内的蛋白质和核酸等物质对温度敏感的细胞组分发生变性,并使得其生长停止、最终死亡。近年来,16S rRNA基因Illumina MiSeq高通量测序技术被广泛应用于海洋、湖泊、水库、污水处理系统等水体微生物多样性、群落结构及功能研究领域[14-15]。众多学者基于该技术研究了温度对硝化菌群组成的影响,发现温度会影响NOB菌群的多样性和结构[16-19],但鲜有研究涉及NOB菌群的微生物代谢功能及相关功能基因。
本研究基于16S rRNA高通量测序技术,探究在3种温度(25 ℃、35 ℃和40 ℃)条件下,人工模拟废水中富集的NOB菌群间的关联网络关系、生物特征标记物及代谢功能,并利用KEGG数据库分析硝化过程微生物代谢途径,以期进一步揭示温度对硝化过程中的微生物的影响,为生物脱氮工艺的优化调控提供参考。
利用16S rRNA高通量测序技术考察温度对生物脱氮硝化过程中亚硝酸盐氧化菌代谢功能的影响
Investigation on the effect of temperature on the metabolism and function of nitrite-oxidizing bacteria in the process of biological nitrification by 16S rRNA high-throughput sequencing technology
-
摘要: 为探究温度对生物脱氮硝化过程微生物代谢及功能基因的影响,采用16S rRNA高通量测序技术,以富集的亚硝酸盐氧化菌(NOB)为研究对象,考察了活性污泥系统硝化过程中菌属与比亚硝酸盐氧化速率(SNiOR)的相关性。通过LEfSe分析筛选出3种温度(25、35和40℃)条件下的生物标记物,并利用KEGG数据库解析了微生物的代谢功能、氮代谢相关酶类型及相对丰度。结果表明,在3种温度条件下,NOB富集系统内的Nitrospira是SNiOR的唯一影响因子,且两者呈现显著的正相关性,Spearman相关系数(ρ)为0.95。此外,在温度条件为25、35和40℃时,分别筛选出14种、6种和8种生物标记物,显著优势菌分别是Xanthomonadales目、Sphingomonadales目和Gammaproteobacteria纲。以上结果说明:温度对微生物的代谢功能具有一定程度的影响,低温有利于碳水化合物代谢、能量代谢;较高温度会抑制能量代谢,NOB丰度降低;随着温度的升高,亚硝酸盐氧化还原酶(nxr)类基因(nxrA和nxrB)的数量基本保持不变。Abstract: In order to investigate the effect of temperature on microbial metabolism and functional genes during biological nitrification, 16S rRNA high-throughput sequencing technology was used to investigate the correlation between bacterial genera and specific nitrite oxidation rate (SNiOR) in the nitrite oxidizing bacteria (NOB) enrichment activated sludge system. The biomarkers were screened by LEfSe analysis at three different temperatures (25°C, 35°C and 40°C). Based on the KEGG database, the metabolic functions, nitrogen metabolism-related enzyme types and relative abundance of microorganisms were also resolved. The results showed that Nitrospira was the only influencing factor of SNiOR within the NOB enrichment system at three different temperatures , and there was a significant positive correlation between Nitrospira and SNiOR with the Spearman correlation coefficient (ρ) at 0.95. In addition, 14, 6 and 8 biomarkers were screened at 25°C, 35°C and 40°C, respectively. The dominant genera were Xanthomonadales, Sphingomonadales and Gammaproteobacteria, respectively. These results suggested that temperature had a certain degree of influence on the metabolic function of microorganisms. Low temperature favored carbohydrate metabolism and energy metabolism, and higher temperature inhibited energy metabolism and decreased NOB abundance. The number of nitrite oxidoreductase (nxr) genes (nxrA and nxrB) remained almost unchanged with the increase of temperature.
-
-
[1] 马智明. 生物脱氮除磷理论与技术进展[J]. 化工管理, 2018(21): 179-180. doi: 10.3969/j.issn.1008-4800.2018.21.137 [2] PENG Y Z, ZHU G B, GUO J H, et al. Biological nitrogen removal with nitrification and denitrification via nitrite pathway[J]. Applied Microbiology and Biotechnology, 2006, 73(1): 15-26. doi: 10.1007/s00253-006-0534-z [3] WANG T, ZHANG L G, LE B, et al. Simultaneous heterotrophic nitrification and aerobic denitrification at high concentrations of NaCl by Halomonas Bacteria[J]. IOP Conference Series:Earth and Environmental Science, 2019, 237: 052033. doi: 10.1088/1755-1315/237/5/052033 [4] 史银银, 明红霞, 陈泉睿, 等. 亚硝酸盐氧化细菌的生态位以及对海洋环境变化的响应机制[J]. 微生物学通报. 2021, 48(8) : 2985-2901. [5] DAIMS H, LÜCKER S, WAGNER M, et al. A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016, 24(9): 699-712. doi: 10.1016/j.tim.2016.05.004 [6] GOUDAR C T, GANJI S H, PUJAR B G. Substrate inhibition kinetics of phenol biodegradation[J]. Water Environment Research, 2000, 72(1): 50-55. doi: 10.2175/106143000X137103 [7] SPIECK E, HARTWIG C, CORMACK I, et al. Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge[J]. Environmental Microbiology, 2006, 8: 405-415. doi: 10.1111/j.1462-2920.2005.00905.x [8] 包鹏, 王淑莹, 马斌, 等. 不同溶解氧间歇曝气对亚硝酸盐氧化菌的影响[J]. 中国环境科学, 2016, 36(9): 2696-2702. doi: 10.3969/j.issn.1000-6923.2016.09.024 [9] ZHU S M, CHEN S. The impact of temperature on nitrification rate in fixed film biofilters[J]. Aquacultural Engineering, 2002, 26(4): 221-237. doi: 10.1016/S0144-8609(02)00022-5 [10] 陈翠忠, 高宇学, 王文迪, 等. 温度对SBR生物脱氮效能的长期影响[J]. 环境工程, 2018, 36(6): 68-72. [11] TAYLOR A E, MYROLD D D, BOTTOMLEY P J. Temperature affects the kinetics of nitrite oxidation and nitrification coupling in four agricultural soils[J]. Soil Biology and Biochemistry, 2019, 136: 107523-107523. doi: 10.1016/j.soilbio.2019.107523 [12] 于雪, 孙洪伟, 李维维, 等. 温度对硝化杆菌(Nitrobacter)活性动力学影响[J]. 中国环境科学, 2019, 40(3): 1427-1430. [13] 吴鹏, 陆爽君, 徐乐中, 等. 温度对ABR-MBR复合工艺处理生活污水的影响及其微生物群落分析[J]. 环境科学, 2014, 35(9): 3466-3472. [14] WERTZ S, POLY F, LE ROUX X, et al. Development and application of a PCR-denaturing gradient gel electrophoresis tool to study the diversity of Nitrobacter-like nxrA sequences in soil[J]. FEMS Microbiology Ecology, 2008, 63(2): 261-271. doi: 10.1111/j.1574-6941.2007.00416.x [15] CHU Y J, COREY D R. RNA sequencing: Platform selection, experimental design, and data interpretation[J]. Nucleic Acid Therapeutics, 2012, 22(4): 271-274. doi: 10.1089/nat.2012.0367 [16] 曾涛涛, 蒋小梅, 韩科昌, 等. 生活污水处理厂微生物群落结构解析[J]. 安全与环境学报, 2018, 18(2): 697-703. [17] FRIAS-LOPEZ J, SHI Y, TYSON G W, et al. Microbial community gene expression in ocean surface waters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3805-3810. doi: 10.1073/pnas.0708897105 [18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 211-213 [19] HEWSON I, PORETSKY R S, TRIPP H J, et al. Spatial patterns and light-driven variation of microbial population gene expression in surface waters of the oligotrophic open ocean[J]. Environmental Microbiology, 2010, 12(7): 1940-1956. doi: 10.1111/j.1462-2920.2010.02198.x [20] 张婷婷, 张建, 杨芳, 等. 温度对污水脱氮系统污染物去除效果及氧化亚氮释放的影响[J]. 环境科学, 2012, 33(4): 1283-1287. [21] LANGILLE M G I, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821. doi: 10.1038/nbt.2676 [22] WANG Q, YE L, JIANG G, et al. Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway[J]. Water Research, 2014, 55(10): 245-255. [23] MA B, YANG L, WANG Q, et al. Inactivation and adaptation of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria when exposed to free nitrous acid[J]. Bioresource Technology, 2017, 245(8): 1266-1270. [24] RADAX R, RATTEI T, LANZEN A, et al. Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community[J]. Environmental Microbiology, 2012, 14(5): 1308-1324. doi: 10.1111/j.1462-2920.2012.02714.x [25] LI Y, LI J, WANG Z, et al. Inhibition kinetics of nitritation and half-nitritation of old landfill leachate in a membrane bioreactor[J]. Journal of Bioscience and Bioengineering, 2016, 123(4): 482-488. [26] 杨浩, 张国珍, 杨晓妮, 等. 典型集雨人饮地区窖水微生物群落多样性及差异解析[J]. 环境科学, 2017, 38(4): 4733-4746.