-
近年来,餐厨垃圾的产量急剧增加[1],据统计,中国每年产生的餐厨垃圾超过6 000×104 t[2]。在餐厨垃圾的处理过程中会产生大量的餐厨废水,而餐厨废水的无害化和资源化处理受到广泛关注。厌氧消化技术可以将餐厨废水中的有机质转化为沼气,实现能源的回收与利用[3]。然而,厌氧消化产生的沼气中含有40%~60%的不可燃气体CO2,降低了沼气的热值。有研究表明,提纯后的沼气(CH4>90%)可用作车辆燃料或作为天然气替代能源[4]。目前,沼气提纯方法可以分为物理法、化学法和生物法等。沼气生物提纯作为一种新型处理技术越来越受到重视,该技术利用嗜氢产甲烷菌的新陈代谢作用将CO2和H2转化为CH4,而不是将CO2从体系中分离或吸收,可减少CO2排放,故具有低能耗、无二次污染等特点[5-6]。
根据供氢方式的不同,沼气生物提纯技术可分为原位提纯和异位提纯。原位沼气提纯中H2直接注入厌氧消化体系中,在微生物作用下H2和CO2转化为CH4,装置简单易操作,但氢分压的增加及混合剪切力的增强可能会降低产甲烷菌的性能,导致有机酸积累,降低反应效率[7]。异位生物提纯中厌氧消化和沼气提纯在2个独立体系内进行,厌氧消化产生的沼气通入提纯体系内,嗜氢产甲烷菌在H2的作用下提纯沼气,具有较高稳定性和灵活性[8,9]。然而,H2的气液传质效率成为沼气提纯的主要限制因素[10]。如何提高H2的溶解度是解决低H2传质速率的关键。纳米零价铁(nano zero-valent iron, nZVI)在厌氧条件下可以与水反应生成H2(式(1)),该过程中H2从容器底部析出,可以加大气液接触面积。DONG等[11]的研究表明,nZVI溶解产生H2可以提高CO2的甲烷化。此外,气体传递系数的提高可以提升H2气-液传质速率(式(2))[12]。有研究[13]表明,气体循环可有效增加气体传递系数,提高H2利用率和CH4含量。KARIM等[14]利用气体循环提高了牛粪厌氧体系中CH4的产量。ZHAO等[13]在气体循环条件下对污泥进行半连续厌氧消化处理,与无气体循环相比,CH4含量提高了14%~15%。但关于nZVI供氢的异位生物提纯与气体循环相结合的研究报道还较少。
式中:Rt表示H2传质速率,mol·(L·h)−1;kLa表示线性气体传递系数,h−1;H2gTh表示气相中H2浓度,mol·L−1;H2l表示液相中H2浓度,mol·L−1。
本研究通过厌氧消化处理餐厨废水,采用异位生物提纯方法提高CH4含量。在实验过程中,利用nZVI在厌氧体系下析氢为沼气提纯体系提供H2,同时设计单向式、往复式、循环式3种气体循环方式,分析了不同气体循环方式下沼气异位生物提纯效果,以期获得最佳的运行方式。
气体循环方式对餐厨废水厌氧消化沼气生物提纯的影响
Effects of gas recirculation mode on biogas biological upgrading by anaerobic digestion of kitchen wastewater
-
摘要: 本研究对餐厨废水进行厌氧消化处理,并利用纳米零价铁供氢及嗜氢产甲烷菌的代谢作用来提高CH4含量,以实现沼气异位生物提纯。实验中比较了单向式、往复式、循环式3种气体循环方式对厌氧消化-沼气提纯耦合系统的影响。结果表明:3种气体循环方式均可提高CH4含量,其中循环式可获得最大甲烷含量为93.87%,累积沼气(CH4)产量为167.44 (157.18) mL·g−1(以VS计);纳米零价铁可降低沼气提纯体系内ORP,气体循环促进了COD和VFAs的降解,CO2循环有利于维持体系内酸碱平衡,富氢值表明H2传质效率显著提高。微生物群落结构分析结果表明,产甲烷菌类型已向氢营养型产甲烷菌演替,Methanobacterium和Methanolinea相对丰度最大。以上研究结果表明,基于纳米零价铁供氢的沼气异位提纯和气体循环可以提升厌氧消化性能,提高CH4含量。Abstract: In this study, the anaerobic digestion was used to treat the kitchen wastewater, and the CH4 content increased through the combined way of hydrogen supplied from nano zero-valent iron (nZVI) dissolution and metabolism effect of hydrogenotrophic methanogens, the ex-situ biological upgrading of biogas was achieved. The effect of three gas recirculation modes named one-direction-flow, reciprocating-flow and circulating-flow on the anaerobic digestion-biogas biological upgrading systems were compared in this experiment. The results showed that all three gas recirculation modes could increase CH4 content, of which circulating-flow mode could produce the maximum methane content of 93.87%, the corresponding cumulative biogas (CH4) yield was 167.44 (157.18) mL·g−1 (VS basis). nZVI addition could decrease the ORP in biogas upgrading system, gas recirculation promoted the degradation of COD and VFAs, CO2 recirculation maintained the balance of acid-base, the value of hydrogen enrichment indicated that the mass transfer efficiency of H2 increased significantly. The microbial community analysis showed that the methanogenic microorganisms transformed to hydrogenotrophic methanogens, in which the highest relative abundances were Methanobacterium and Methanolinea. The above results indicated that based on the hydrogen supply by nZVI method, the biogas ex-situ biological upgrading and gas recirculation could improve the anaerobic digestion performance and CH4 content.
-
表 1 餐厨废水和接种污泥的主要性质
Table 1. Characterizations of the kitchen wastewater and inoculated sludge
样品 pH TS
/%VS
/%MLSS
/(g·L−1)MLVSS
/(g·L−1)C/N C/H SCOD
/(g·L−1)TCOD
/(g·L−1)餐厨废水 4.01±0.05 — — 30.32±1.51 27.92±1.16 11.68±0.21 5.66±0.08 64.32±0.58 80.03±0.74 接种污泥 6.83±0.12 13.97±0.12 12.88±0.11 — — 7.02±0.14 7.50±0.11 — — 注:pH为酸碱度;TS为总固体;VS为挥发性固体;MLSS为混合液悬浮固体浓度;MLVSS为混合液挥发性悬浮固体浓度;C/N为碳氮比;C/H为碳氢比;SCOD为溶解性化学需氧量;TCOD为总化学需氧量。 表 2 厌氧消化体系和沼气提纯体系的实验设计参数
Table 2. Experimental design parameters of the anaerobic digestion systems and biogas upgrading systems
反应体系 工作体积
/mL接种物
/(g·L−1)pH VFAs
/(g·L−1)SCOD
/(g·L−1)TCOD
/(g·L−1)ORP
/mVnZVI
/(g·L−1)厌氧消化体系 400 8.05±0.02 7.00±0.08 1.04±0.08 6.87±0.21 10.33±0.5 100±4 — 沼气提纯体系 400 25.76±0.30 7.00±0.10 — — — 100±5 6 注:VFAs为挥发性脂肪酸;ORP为氧化还原电位。 表 3 不同气体循环方式对酶活的影响
Table 3. Effects of different gas recirculation types on enzyme activity
反应组 蛋白酶
/
nmol·(min·g)−1乙酸激酶
/
nmol·(min·g)−1脱氢酶
/
μg·(min·g)−1F420辅酶
/
μg·g−1初始污泥 9.64±0.12 66.58±1.21 8.16±0.22 0.033±0.002 A1 17.67±0.25 74.91±1.32 10.40±0.23 0.053±0.003 A2 62.66±1.08 79.07±1.16 15.16±0.36 0.059±0.003 A3 67.48±0.79 91.55±1.03 29.29±0.63 0.067±0.004 U1 — — 30.34±0.58 0.061±0.003 U2 — — 31.23±0.64 0.074±0.004 U3 — — 31.10±0.77 0.090±0.005 -
[1] WANG Q, FENG K, LI H. Nano iron materials enhance food waste fermentation[J]. Bioresource Technology, 2020, 315: 123804. doi: 10.1016/j.biortech.2020.123804 [2] TONG Y J, ZUO C J, DING W L, et al. Sulfonic nanohydrogelled surface-modified microporous polyvinylidene fluoride membrane with excellent antifouling performance for treating water-oil separation of kitchen wastewater[J]. Journal of Membrane Science, 2021, 628: 119113. doi: 10.1016/j.memsci.2021.119113 [3] 郑晓伟, 李兵, 李益, 等. 接种比对餐厨垃圾干式厌氧发酵启动的影响[J]. 环境工程学报, 2014, 8(3): 1157-1162. [4] DENG L Y, HAGG M B. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 638-646. doi: 10.1016/j.ijggc.2009.12.013 [5] LUO G, ANGELIDAKI I. Hollow fiber membrane based H2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor[J]. Applied Microbiology and Biotechnology, 2013, 97(8): 3739-3744. doi: 10.1007/s00253-013-4811-3 [6] ROY S, SCHIEVANO A, PANT D. Electro-stimulated microbial factory for value added product synthesis[J]. Bioresource Technology, 2016, 213: 129-139. doi: 10.1016/j.biortech.2016.03.052 [7] AGNEESSENS L M, OTTOSEN L D M, VOIGT N V, et al. In-situ biogas upgrading with pulse H2 additions: The relevance of methanogen adaption and inorganic carbon level[J]. Bioresource Technology, 2017, 233: 256-263. doi: 10.1016/j.biortech.2017.02.016 [8] 汤晴, 徐锦, 徐利锋, 等. 餐厨垃圾厌氧产沼气及沼气异位生物提纯通气比分析[J]. 环境工程学报, 2019, 13(11): 2701-2710. doi: 10.12030/j.cjee.201901172 [9] KOUGIAS P G, TREU L, BENAVENTE D P, et al. Ex-situ biogas upgrading and enhancement in different reactor systems[J]. Bioresource Technology, 2017, 225: 429-437. doi: 10.1016/j.biortech.2016.11.124 [10] BASSANI I, KOUGIAS P G, TREU L, et al. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions[J]. Environmental Science & Technology, 2015, 49(20): 12585-12593. [11] DONG D, ALETA P, ZHAO X, et al. Effects of nanoscale zero valent iron (nZVI) concentration on the biochemical conversion of gaseous carbon dioxide (CO2) into methane (CH4)[J]. Bioresource Technology, 2019, 275: 314-320. doi: 10.1016/j.biortech.2018.12.075 [12] LAI C Y, ZHOU L J, YUAN Z G, et al. Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions[J]. Water Research, 2021, 197: 117120. doi: 10.1016/j.watres.2021.117120 [13] ZHAO J M, HOU T T, LEI Z F, et al. Effect of biogas recirculation strategy on biogas upgrading and process stability of anaerobic digestion of sewage sludge under slightly alkaline condition[J]. Bioresource Technology, 2020, 308: 123293. doi: 10.1016/j.biortech.2020.123293 [14] KARIM K, HOFFMANN R, KLASSON K T, et al. Anaerobic digestion of animal waste: Effect of mode of mixing[J]. Water Research, 2005, 39(15): 3597-3606. doi: 10.1016/j.watres.2005.06.019 [15] ZHANG J J, ZHAO M X, LI C, et al. Evaluation the impact of polystyrene micro and nanoplastics on the methane generation by anaerobic digestion[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111095. doi: 10.1016/j.ecoenv.2020.111095 [16] 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002. [17] 高树梅. 餐厨垃圾厌氧消化过程中氨氮耐受响应机制研究[D]. 无锡: 江南大学, 2015. [18] GOEL R, MINO T, SATOH H, et al. Enzyme activities under anaerobic and aerobic conditions inactivated sludge sequencing batch reactor[J]. Water Research, 1998, 32(7): 2081-2088. doi: 10.1016/S0043-1354(97)00425-9 [19] DU W J, HUANG X D, ZHANG J M, et al. Enhancing methane production from anaerobic digestion of waste activated sludge with addition of sodium lauroyl sarcosinate[J]. Bioresource Technology, 2021, 336: 125321. doi: 10.1016/j.biortech.2021.125321 [20] DELAFONTAINE M J, NAVEAU H P, NYNS E J. Fluorimetric monitoring of methanogenesis in anaerobic digesters[J]. Biotechnology Letters, 1979, 1(2): 71-74. doi: 10.1007/BF01398311 [21] 廖家林, 赵明星, 黄振兴, 等. 油脂降解及其对餐厨废水厌氧发酵性能影响[J]. 食品与生物技术学报, 2013, 32(8): 803-808. [22] 姜萌萌, 林敏, 郑晓宇, 等. 高温厌氧膜生物反应器处理餐厨废水的启动[J]. 中国环境科学, 2020, 40(12): 5318-5324. doi: 10.3969/j.issn.1000-6923.2020.12.025 [23] ZHOU J, YOU X G, NIU B W, et al. Enhancement of methanogenic activity in anaerobic digestion of high solids sludge by nano zero-valent iron[J]. Science of the Total Environment, 2020, 703: 135532. doi: 10.1016/j.scitotenv.2019.135532 [24] LATHA K, VELRAJ R, SHANMUGAM P, et al. Mixing strategies of high solids anaerobic co-digestion using food waste with sewage sludge for enhanced biogas production[J]. Journal of Cleaner Production, 2019, 210: 388-400. doi: 10.1016/j.jclepro.2018.10.219 [25] SUVAJITTANONT W, CHAIPRASERT P. Potential of biogas recirculation to enhance biomass accumulation on supporting media[J]. Bioresource Technology, 2003, 88(2): 157-162. doi: 10.1016/S0960-8524(02)00278-X [26] ZHANG W L, XING W L, LI R D. Real-time recovery strategies for volatile fatty acid-inhibited anaerobic digestion of food waste for methane production[J]. Bioresource Technology, 2018, 265: 82-92. doi: 10.1016/j.biortech.2018.05.098 [27] WEI J, HAO X D, VAN LOOSDRECHT M C M, et al. Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review[J]. Renewable & Sustainable Energy Reviews, 2018, 89: 16-26. [28] LI Y Y, QIAO W. Transformations and impacts of ammonia and hydrogen sulfide in anaerobic reactors[M]. Anaerobic Biotechnology: Environmental Protection and Resource Recovery, 2015. [29] LIU C G, XUE C, LIN Y H, et al. Redox potential control and applications in microaerobic and anaerobic fermentations[J]. Biotechnology Advances, 2013, 31(2): 257-265. doi: 10.1016/j.biotechadv.2012.11.005 [30] 张冰. 污泥中产甲烷细菌多样性及产甲烷效能的优化研究[D]. 哈尔滨: 东北林业大学, 2014. [31] XU R, XU S N, ZHANG L, et al. Impact of zero valent iron on blackwater anaerobic digestion[J]. Bioresource Technology, 2019, 285: 121351. doi: 10.1016/j.biortech.2019.121351 [32] MENG X S, ZHANG Y B, LI Q, et al. Adding Fe-0 powder to enhance the anaerobic conversion of propionate to acetate[J]. Biochemical Engineering Journal, 2013, 73: 80-85. doi: 10.1016/j.bej.2013.02.004 [33] RIVIERE D, DESVIGNES V, PELLETIER E, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. Isme Journal, 2009, 3(6): 700-714. doi: 10.1038/ismej.2009.2 [34] LI P C, LIU Z Y, ZHAO M X, et al. Evaluation of biogas performance and process stability from food, kitchen, and fruit/vegetable waste by mono-, co-, and tridigestion[J]. Energy & Fuels, 2020, 34(10): 12734-12742. [35] ZHAO X L, LIU J H, LIU J J, et al. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass[J]. Bioresource Technology, 2017, 241: 349-359. doi: 10.1016/j.biortech.2017.03.183 [36] ARIESYADY H D, ITO T, OKABE S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester[J]. Water Research, 2007, 41(7): 1554-1568. doi: 10.1016/j.watres.2006.12.036