-
在我国北方地区,热电机组承担着民生供暖和工业供热任务,在满足正常热负荷需求的同时,还应关注机组运行的稳定性[1]。脉冲袋式除尘器作为机组烟气净化系统的一部分,保障其滤袋寿命是维持热电机组高效稳定运行的关键步骤[2-5]。空气动力学损伤是影响滤袋寿命的主要原因之一,包括含尘过滤气流冲刷和喷吹气流偏斜等因素,特别是清灰气流含尘浓度过高也会导致滤袋磨损甚至大范围破损[6-9]。然而,目前为止,关于滤袋磨损过程仍依靠实践经验来判断,缺乏精确系统的分析。
CFD数值模拟技术广泛应用于大型袋除尘器的内部气流组织特性分析。CANDIDO等[10]、PARK等[11]就气流分布不均问题,采用单相流数值模拟方法进行了袋式除尘器的结构和性能研究。ANDERSEN等[12]通过数值模拟发现,喷吹时采用直孔喷嘴会使脉冲射流严重偏离,加装喷嘴对气流具有一定矫正作用。上述研究为防止滤袋破损提供了研究基础,但采用的单相流模拟方法无法分析颗粒对滤袋磨损过程及其影响规律。而王以飞等[13]、潘伶等[14]、马洁等[15]在研究含尘过滤气流时,加入了拉格朗日离散颗粒模型(Discrete particle model,DPM),直观、准确地描述了颗粒在袋除尘器箱体内的运动轨迹和状态,但未涉及清灰过程中含尘气流对滤袋内表面磨损过程分析内容。脉冲清灰气流是由压缩空气诱导上箱体清洁气流形成的,压缩空气的含尘浓度应小于5 mg·m−3[4-5,16]。某燃煤热电厂在运行期间多次发生滤袋破损现象,反复检修更换滤袋后,滤袋破损问题并未得到根本解决。现场初步判断上箱体花板积灰是滤袋反复破损的主要原因之一。由于对颗粒在箱体净气侧的运动状态和磨损滤袋的过程及规律认识不足,无法确定滤袋破损的根本原因,严重影响了机组运行的稳定性。因此,采用气固两相流模拟方法分析清灰时含尘气流对滤袋的内磨损机制成为袋除尘器稳定运行的关键。
本研究以该燃煤热电厂为例,针对袋式除尘器滤袋短时间反复破损失效现象,采用DPM模型,对清灰气流含尘浓度过高导致滤袋破损失效的演变过程进行了分析,同时结合现场调研和破损滤袋检测结果,明确了产生此类故障的原因,并针对此类故障提出了处置建议,为燃煤电厂提高袋式除尘器运行维护水平和烟气净化系统稳定性提供参考。
基于CFD的滤袋内侧磨损失效过程分析
Analysis on the wear-out failure process of the inner surface of the filter bag based on CFD
-
摘要: 针对某燃煤热电厂袋式除尘器滤袋破损和多次换袋检修失效现象,采用气固两相流数值模拟方法,对清灰气流含尘浓度过高导致滤袋破损失效的演变过程进行了分析,并结合现场调研和破损滤袋检测结果,明确了产生此类故障的原因。结果表明:喷吹总气量的22%为诱导气流,袋口上方的诱导气流速度接近7 m·s−1,上箱体内悬浮颗粒甚至袋口周边沉积的粉尘将在清灰气流的诱导作用下进入滤袋,并逐渐积累;袋内灰柱表面的粉尘受清灰气流扰动在沉积层上方反复磨损滤袋内侧净气面,磨损位置与积灰高度相关,均位于积灰表面上方50 mm范围内。模拟分析结果与检测结果一致,上箱体花板和滤袋内部长期积灰是导致滤袋破损失效的根本原因。根据上述研究结果提出了有针对性的维修方案并经现场实施后,袋式除尘器运行2年时间内再未发生滤袋破损失效现象,且烟气净化系统出口颗粒物排放浓度低于当地环保排放限值10 mg·m−3。本研究结果可为判断滤袋健康状况及导致滤袋破损失效的直接原因提供参考。Abstract: Aiming at the phenomenon that the breakage of filter bags and the failure of repeated bag replacement in a coal-fired thermal power plant, the evolution process of the filter bag’s damage caused by the cleaning airflow with high dust concentration was analyzed by gas-solid two-phase flow numerical simulation method. The cause of the failure was clarified combined with field investigation and the tests of damaged filter bags. The results showed that the 22% of the total airflow is the induced airflow, and the velocity of the induced airflow above the bag mouth is close to 7 m·s-1. The suspended particles in the upper box and even particles deposited around the mouth of the bag were inducted into the filter bag by the airflow and gradually accumulated in the bag. Therefore, the particles above the surface of the dust column will be disturbed by the airflow and repeatedly wear out the inner surface of the filter bag above the deposition layer. The wear position of the inner surface was related to the height of the dust accumulation in the bag, which was located within 50 mm above the deposition surface of the ash column in the bag. The simulation analysis was basically consistent with the on-site test results, the fundamental cause of filter bag breakage and failure was the long-time dust accumulation in the upper box and inside filter bags. Based on the research results, a targeted maintenance plan was proposed and implemented on site. No filter bag breakage and failure occurred during the operation of bag filter for 2 years, and the emission concentration of particulate matter at the outlet of the flue gas purification system was lower than the local environmental protection emission value of 10 mg·m-3. The results of this study can provide reference for judging the health status of filter bags and the direct causes of filter bag damage and failure.
-
-
[1] 陶晖, 陶岚. 袋式除尘技术在我国燃煤电厂的推广应用[J]. 中国环保产业, 2015(1): 15-21. doi: 10.3969/j.issn.1006-5377.2015.01.003 [2] 姚群, 宋七棣, 陈志炜. 2019年袋式除尘行业发展评述及展望[J]. 中国环保产业, 2020(2): 19-22. [3] ZHENG C H, KANAOKA C. Recent advances in dust collection technology and ISO standardization in bag filtration[J]. Journal of Zhejiang University-Science A:Applied Physics & Engineering, 2018, 19(1): 21-33. [4] 张殿印, 王纯. 脉冲袋式除尘器手册[M]. 北京: 化学工业出版社, 2010. [5] 陈隆枢, 陶辉. 袋式除尘技术手册[M]. 北京: 机械工业出版社, 2010. [6] 王丹丹, 钱付平, 夏勇军, 等. 基于故障树分析法袋式除尘器滤袋失效的研究与应用[J]. 环境工程学报, 2016, 10(6): 3118-3124. doi: 10.12030/j.cjee.201501135 [7] 柳静献, 毛宁, 孙熙, 等. 预防袋除尘滤料失效的措施分析[J]. 中国环保产业, 2019(7): 26-28. doi: 10.3969/j.issn.1006-5377.2019.07.011 [8] 陈隆枢. 设备本体缺陷导致袋式除尘器失效因素探析[J]. 中国环保产业, 2012(3): 34-39. doi: 10.3969/j.issn.1006-5377.2012.03.012 [9] 雷新维, 唐勇. 电厂袋式除尘器滤袋故障分析及处理[J]. 中国环保产业, 2010(8): 38-40. doi: 10.3969/j.issn.1006-5377.2010.08.010 [10] CANDIDO T, BEZERRA F, RESSEL F, et al. The influence of the fabric filter layout of in a flow mass filtrate[J]. Journal of Cleaner Production, 2016, 111: 117-124. doi: 10.1016/j.jclepro.2015.09.070 [11] PARK S, JOE Y H, SHIM J, et al. Non-uniform filtration velocity of process gas passing through a long bagfilter[J]. Journal of Hazardous Materials, 2018, 42: 433-444. [12] ANDERSEN B O, NIELSEN N F, WALTHER J H. Numerical and experimental study of pulse-jet cleaning in fabric filters[J]. Powder Technology, 2016, 291: 284-298. [13] 王以飞, 沈恒根. 袋式除尘器在线清灰流场分布的研究[J]. 环境工程, 2010, 28(2): 72-77. [14] 潘伶, 刘菲, 杨沛山. 基于气固两相流场的袋式除尘器钢结构优化[J]. 机械设计与研究, 2013, 29(1): 104-106. doi: 10.3969/j.issn.1006-2343.2013.01.027 [15] 马洁, 王春波, 任育杰, 等. 柔性膜高温除尘器内气固两相流动数值模拟与优化设计[J]. 华北电力大学学报:自然科学版, 2019(1): 99-106. [16] 环境保护部. 袋式除尘工程通用技术规范: HJ 2020-2012[S]. 北京: 中国环境科学出版社, 2012. [17] 党小庆, 刘美玲, 马广大, 等. 脉冲袋式除尘器喷吹气流的数值模拟[J]. 西安建筑科技大学学报:自然科学版, 2008(3): 403-406. [18] 钟丽萍. 脉冲袋式除尘器喷吹清灰性能工艺参数优化试验研究[D]. 西安: 西安建筑科技大学, 2015. [19] 温正, 良臣, 毅如. FLUENT流体计算应用教程[M]. 北京: 清华大学出版社, 2009. [20] 郭星, 党小庆, 劳以诺, 等. 回转定位脉冲喷吹袋式除尘器滤袋长度可延长性分析[J]. 环境工程学报, 2017, 11(3): 1766-1770. doi: 10.12030/j.cjee.201511165 [21] 王辉. 流化床粉煤灰与煤粉炉粉煤灰理化性质研究[J]. 能源与节能, 2017, 144(9): 72-74. doi: 10.3969/j.issn.2095-0802.2017.09.037 [22] 马鑫. 袋式除尘器脉冲喷吹清灰机理研究[D]. 沈阳: 东北大学, 2009. [23] 娄可宾. 袋式除尘器脉冲清灰的数值模拟[D]. 上海: 东华大学, 2007. [24] 谢洪勇, 刘志军. 粉体力学与工程[J]. 2版. 北京:化学工业出版社, 2007: 9-18. [25] 柳静献, 毛宁, 孙熙, 等. 我国除尘滤料历史、现状与发展趋势综述[J]. 中国环保产业, 2020(11): 6-18. doi: 10.3969/j.issn.1006-5377.2020.11.001 [26] 中国电力企业联合会. 火力发电厂袋式除尘器用滤料寿命管理与评价方法: DL/T 1514-2016 [S]. 北京: 中国电力出版社, 2018.