-
挥发性氯代烃(volatile chlorinated hydrocarbons,VCHs)是一类挥发性和毒性极强的挥发性有机物(volatile organic compounds,VOCs),常作为优良的化学溶剂及其中间体应用于各工业领域,是VOCs污染地块中常见的特征污染物[1]。VOCs污染物具有化学性质活泼、易挥发、易暴露迁移等特点,导致其在调查评估中对采集、保存以及运输等各环节的技术要求更为严格[2]。我国现行的污染地块调查方法主要以SH-30冲击钻探采样并送检有资质的实验室为主,依据土壤检测数据判断地块VOCs污染状况[2-3]。而众多项目案例及研究表明[2,4-7],土壤数据无法准确、完整地反映地块VOCs污染状况及环境风险。因土壤包气带中的VOCs主要以吸附形态、非水相液体、土壤水和土壤气4种形态赋存,其分布具有较大的时间和空间非均质性,土壤浓度数据无法客观反映土壤气中的VOCs[4,8];采样、运输等过程中存在不同程度的挥发,导致检测结果偏低,甚至完全失真[4]。此外,现行调查方法还存在成本高、项目周期长等缺点,在大型污染地块调查中尤为突显[9]。
基于膜界面探针(membrane interface probe,MIP)并结合配备卤素专用检测器(halogen specific detector,XSD)的便携式检测设备的MIP系统,能够在原位将土壤中不同赋存形态的VOCs收集并输送至便携式检测设备进行现场检测,进而快速识别地块VOCs污染范围及程度[10-14]。Geoprobe公司标准操作手册和相关文献表明[13-16],MIP系统的电极集成土壤电导率检测器电信号值(EC)能够判断土壤质地,卤素专用检测器能测定土壤中含卤素的有机化合物。MIP系统快速调查技术能够获取高密度的数据,可实时调整调查方案,具有时效性高、成本低等优势,但缺点在于检测数据不能准确表征具体的物质和含量[13-14,16]。而现行调查方法获取的实验室检测数据准确性强,且能测定具体的物质和含量[9]。因此,将上述两种方法有效结合,应具有快速且高效地开展地块VOCs污染状况调查工作的潜力。
本研究以华北地区某VCHs污染地块为研究对象,利用现行调查方法与MIP系统快速调查技术相结合的方式开展地块污染状况调查。研究MIP系统调查所得电信号值和现行调查方法所得地层信息与污染数据之间的关联性;在此基础上,采用MIP系统快速调查技术完成地块污染状况调查工作,并建立地块地层及污染物电信号值空间分布图,以明确地块VCHs的污染分布特征。
MIP系统在某挥发性氯代烃污染地块调查中的应用
Application of MIP system in investigation of a volatile chlorinated hydrocarbon contaminated site
-
摘要: 针对我国挥发性有机污染地块调查评估中存在的采样缺失、成本高及周期长等问题,选择华北地区某挥发性氯代烃污染地块为研究对象,采用现行调查方法与基于膜界面探针(MIP)系统快速调查技术联合使用的方式,现场完成场地钻探调查点位4个(土壤样品36个),MIP系统调查点位11个(验证点位4个),以研究MIP验证点位检测电信号值与其对应场地钻探点位的地层信息、实验室检测数据之间的相关性,以及使用MIP电信号值模拟地块地层和污染空间的分布特征。结果表明,MIP系统检测的土壤电导率电信号值(EC)能够更为详尽地表征地块的地层结构信息;在地块范围内的同一种土质中,MIP系统的专用卤素检测器电信号值(XSD)与实验室检测数据拟合度相对较高(R2>0.99);MIP系统快速调查技术与现行调查方法联合使用能够快速且高效表征调查地块内VCHs的污染空间分布特征。本研究结果可为MIP系统快速调查技术在挥发性有机污染地块调查评估中的应用提供参考。
-
关键词:
- MIP系统快速调查技术 /
- 现行调查方法 /
- 挥发性氯代烃污染地块 /
- 电导率电信号值 /
- 专用卤素检测器电信号值 /
- 空间分布特征
Abstract: In view of the problems existing in the investigation and risk assessment of sites impacted by volatile organic compounds in China, such as lack of sampling, high cost and long term, a volatile chlorinated hydrocarbon contaminated site in the North of China was selected as the research object. The current survey method and the MIP system rapid survey technology were adopted in this study. 4 site drilling survey points (36 soil samples) and 11 MIP system survey points (4 verification points) were completed on-site. The correlation between the detected electrical signal value of the MIP verification point and the stratum information and laboratory test data of the corresponding site drilling point was evaluated, and the MIP signal value was used to simulate the stratum of the block and the spatial distribution characteristics of pollution. The results showed that the electrical conductivity signal value (EC) of the soil detected by the MIP system can fully characterize the stratigraphic structure information of the site. In the same soil of the site, the fitting degree between the electrical signal value (XSD) of the halogen specific detector of MIP system and the laboratory test data was relatively high (R2>0.99). The combination of MIP system rapid survey technology and current survey method could quickly and efficiently characterize the spatial distribution of VCHs in this VCHs site. The research results can provide the reference for the application of MIP system in the investigation and risk assessment of sites impacted by volatile organic compounds. -
表 1 场地钻探调查污染数据结果分析
Table 1. Analysis of pollution data of site drilling survey
污染物 土壤污染风
险筛选值/
(μg·kg−1)最高检测
数值/
(μg·kg−1)检出率/% 超标率/% 最大超
标倍数1,1,2-
三氯乙烷600.00 2 910 000.00 88.89 47.22 4 849.00 三氯乙烯 700.00 175 000.00 69.44 44.44 249.00 氯乙烯 120.00 37 000.00 41.67 27.78 29.83 1,1,2,2-
四氯乙烷1 600.00 510 000.00 58.33 13.89 317.75 1,2,3-
三氯丙烷50.00 4 560.00 30.56 19.44 90.21 1,2-二
氯乙烷520.00 41 200.00 58.33 16.67 78.23 四氯乙烯 1 1000.00 504 000.00 94.44 16.67 44.82 1,4-
二氯苯5 600.00 137 000.00 69.44 11.11 23.46 氯仿 300.00 5 310.00 58.33 13.89 16.70 氯苯 6 8000.00 601 000.00 88.89 8.33 7.84 注:土壤污染风险筛选值是指土壤中污染物含量对人体健康风险的临界值,超过该值时,表明可能存在风险;未超过,则表明风险可忽略。 -
[1] 胡文庆, 邢志林, 赵天涛. 包气带中氯代烃运移特性及原位生物修复研究进展[J/OL]. 应用与环境生物学报: 1-13[2021-11-28]. https://doi.org/10.19675/j.cnki.1006-687x.2021.02043. [2] 马杰. 我国挥发性有机污染地块调查评估中存在的问题及对策建议[J]. 环境工程学报, 2021, 15(1): 3-7. doi: 10.12030/j.cjee.202007080 [3] 姜林, 樊艳玲, 钟茂生, 等. 我国污染场地管理技术标准体系探讨[J]. 环境保护, 2017, 45(9): 38-43. [4] MA J, LAHVIS M A. Rationale for soil gas sampling to improve vapor intrusion risk assessment in China[J]. Ground Water Monitoring & Remediation, 2020, 40(1): 12-13. [5] SWARTJES F A, SICILIANO S. Dealing with contaminated sites: From theory towards practical application[J]. Soil Science Society of America Journal, 2012, 76(2): 748-748. doi: 10.2136/sssaj2011.0004br [6] 马杰. 污染场地VOCs蒸气入侵风险评估与管控[M]. 北京: 科学出版社, 2020. [7] MA J, JIANG L, LAHVIS M A. Vapor intrusion management in China: Lessons learned from the United States[J]. Environmental Science and Technology, 2018, 52(6): 3338-3339. doi: 10.1021/acs.est.8b00907 [8] ZHANG R H, JIANG L, ZHONG M SH, et al. Applicability of soil concentration for VOC-contaminated site assessments explored using field data from the Beijing-Tianjin-Hebei urban agglomeration[J]. Environmental Science and Technology, 2019, 53(2): 789-797. doi: 10.1021/acs.est.8b03241 [9] 姜林, 梁竞, 钟茂生, 等. 复杂污染场地的风险管理挑战及应对[J]. 环境科学研究, 2021, 34(2): 458-467. [10] WATT M D, BURLINGAME M, BEATTIE J R, et al. Expediting sustainable brownfields redevelopment by applying triad using the membrane interface probe[J]. Remediation Journal, 2010, 20: 17-37. doi: 10.1002/rem.20267 [11] American Society for Testing Materials. ASTM standard D7352-07, Standard practice for direct push technology for volatile contaminant logging with the membrane interphase probe (MIP)[S]. 2007. [12] BRONDERS J, VAN KEER I, TOUCHANT K, et al. Application of the membrane interphase probe(MIP): An evaluation[J]. Journal of Soils and Sediments, 2009, 9(1): 74-82. [13] 王海见, 杨苏才, 李佳斌, 等. 利用MIP快速确定某苯系物污染场地污染范围[J]. 环境科学与技术, 2014, 37(2): 96-100. [14] 陈昌照, 宋权威, 高春阳, 等. 膜界面探针在炼厂油罐区场地环境调查中的应用[J]. 油气田环境保护, 2019, 29(2): 49-52. doi: 10.3969/j.issn.1005-3158.2019.02.013 [15] KEJR, INC. Geoprobe® membrane interface probe standard operating procedure[EB/OL]. [2014-06-02]. http://geoprobe com/literature/mip-logging-sop. [16] 朱苓. 膜界面探测器在工业污染场地调查中的应用[J]. 环境监测管理与技术, 2015, 27(1): 27-31. doi: 10.3969/j.issn.1006-2009.2015.01.008 [17] 环境保护部. 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法: HJ 605-2011[S]. 北京: 中国环境科学出版社, 2011. [18] 生态环境部. 土壤环境质量 建设用地土壤污染风险管控标准(试行): GB36600-2018[S/OL]. [2018-08-01]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/W020190626596188930731.pdf. [19] MCCALL W, CHRISTY T M, PIPP D A, et al. Evaluation and application of the optical image profiler (OIP) a direct push probe for photo-logging UV-induced fluorescence of petroleum hydrocarbons[J]. Environmental Earth Sciences, 2018, 77(10): 374. doi: 10.1007/s12665-018-7442-2 [20] SCHULMEISTER M K, HEALEY J M, BUTLER J J J, et al. Direct-push geochemical profiling for assessment of inorganic chemical heterogeneity in aquifers[J]. Journal of Contaminant Hydrology, 2004, 69(3/4): 215-232. doi: 10.1016/j.jconhyd.2003.08.002 [21] 陈戌生, 张惠勤. 电力工程电气设计手册[M]. 北京: 中国电力出版社, 2009. [22] 孙宇瑞. 土壤含水率和盐分对土壤电导率的影响[J]. 中国农业大学学报, 2000, 5(4): 39-41. doi: 10.3321/j.issn:1007-4333.2000.04.009 [23] VLADIMIR S, OMAR D R, ALEKSANDR M, et al. Oil pollution detection using resistivity sounding[J]. Geofisica Internacional, 2013, 42(4): 613-622. [24] CHRISTY T M. A permeable membrane sensor for the detection of volatile compounds in soil[C]//Symposium on the Application of Geophysics to Engineering & Environmental Problems. Environment and Engineering Geophysical Society, 1998. [25] MCANDREWS B, HEINZE K, DIGUISEPPI W. Defining TCE plume source areas using the membrane interface probe(MIP)[J]. Soil and Sediment Contamination, 2003, 12(6): 799-813. doi: 10.1080/10588330390254838 [26] RAVELLA M, FIACCO R J, FRAZIER J, et al. Application of the membrane interface probe (MIP) to delineate subsurface DNAPL contamination[J]. Environmental Engineering Science, 2007, 1: 1-5. [27] 刘锐, 孟凡勇, 文晓刚, 等. 挥发性氯代烃在土壤中的吸附行为研究进展[J]. 土壤学报, 2012, 49(1): 165-172. doi: 10.11766/trxb201010090415 [28] 王昭, 朱晓星, 肖丽微. 包气带不同深度土壤对甲苯和三氯乙烯的吸附研究[J]. 生态环境学报, 2010, 19(12): 2892-2896. doi: 10.3969/j.issn.1674-5906.2010.12.021 [29] BRUSSEAU M L, CARROLL K C, TRUEX M J, et al. Characterization and remediation of chlorinated volatile organic contaminants in the vadose zone[J]. Vadose Zone Journal, 2013, 12(4): 1-17. [30] 于淇. 某化工厂地下水挥发性卤代烃在地下水中的污染迁移研究[D]. 济南: 济南大学, 2017.