-
原位热传导修复技术具有适用范围广、修复周期短、无二次污染等优点[1],是一种高效去除土壤污染物的原位修复技术[2]。原位热传导修复技术修复污染地块的主要作用机理是通过燃气加热或电加热的方式将土壤加热到目标温度,同时,经过蒸发、蒸馏、沸腾、水解、氧化、热解等过程将污染物去除[3];针对不同污染物,其具体作用机理可能不同[4-6],但影响污染物迁移的关键因素是热驱动力[7]。
原位热传导修复的加热区间为200~900 ℃,在加热器附近主要传热方式为辐射和传导传热,在修复地块较远处大部分加热是由热传导引起的[8-10]。在原位热传导修复施工过程中,加热井与周边土壤往往会存在一定的空隙,即回填区。回填区的存在会大大增强加热器附近的辐射效果,甚至达到节能降耗的目的[11-12]。原位热传导修复的主要研究方向为污染物去除效率、能耗控制策略、多技术融合等[1-13],但对回填区传热效果的研究还不够深入,目前,对回填区传热效果的研究主要集中于地埋电缆、地源热泵等领域。
在地埋电缆研究领域中,电缆产生的热量必须通过周围的土壤散失,以达到防止绝缘材料融化、电缆稳定工作的目的。当热量由内向外传导时,电缆附近的湿气发生迁移,从而使得电缆周围土壤含水率下降,导热性能下降,最终会导致电缆温度的升高[14-15]。AHMAD等[16]对地下电力电缆周围填充材料的热性能进行分析发现,通过加强热桥和填充平滑颗粒内缺陷的方法,能够增强干燥颗粒的热传导能力。贺永智等[17]建立了水平排列电缆数值计算模型,经研究发现,直埋电缆覆土层材质中,石英砂传热效果显著高于土壤,更有助于电缆的安全运行。
地源热泵(GSHP)是一种充分利用低品位热能的高效节能装置[18]。回填材料作为地下可利用的浅层地热能和换热器的传热介质,对地埋管换热器与土壤之间的换热能力有直接的影响[19]。LIU等[20]对石英砂-膨润土-碳纤维混合物作为地源热泵中钻孔回填材料的热机械性能进行评估发现,砂粒尺寸越大,石英砂-膨润土-碳纤维混合物的导热系数越高。刘湘云等[21]对不同回填材料下换热器性能进行了分析,结果表明,在相同含水率条件下,混凝土的导热效果最好。雷彦鹏[22]的研究结果表明,在推进地源热泵技术的发展和提升能源利用率过程中,回填材料起着至关重要的作用。
大多数回填区对传热影响的研究是在低温下(小于100 ℃)进行,部分在高温下进行的实验证明了回填区的存在会显著增强附近土壤的换热效果[23],但回填区在原位热传导高温修复下对传热的具体影响研究还不够充分,这包括加热温度、回填材料、回填厚度。因此,本研究将对原位热传导修复过程中回填材料对传热效果的影响进行全方面的评估,包括回填材料种类、回填材料厚度以及加热温度。通过实验和数值模拟的方法,探究回填材料在不同情况下对传热效果的影响,以期为原位热传导修复技术工程实践提供参考。
回填材料对土壤原位热传导修复的影响及数值模拟
Effects of backfill materials on in-situ thermal conduction heating remediation of soil and numerical simulation
-
摘要: 原位热传导修复技术是一种有机污染土壤高效修复手段。由于施工过程中加热井与土壤间会存在一定空隙,关于是否使用回填材料以及回填材料的选取原则,尚未有明确的指导意见。利用实验和数值模拟方法,对原位热传导修复过程中回填材料的影响进行了研究,分析了不同加热温度(200、400 、600 、800 ℃)、回填材料(空气、原土)、回填厚度(40、100、150 mm)对传热的影响。结果表明,基于实验数据所建立的原位热传导数值预测模型是可靠的,模拟计算值与实测值最小平均相对误差为6.69%;当加热温度高于450 ℃时,无回填料时传热效果更好;当加热温度小于300 ℃时,用土壤回填较好;在300~450 ℃时,有无回填料传热效果相差不明显;原位热传导修复技术工程在应用过程中,回填材料厚度100 mm时传热效果最佳。本研究结果可为污染土壤原位热传导修复的工程实践提供参考。Abstract: In-situ thermal conduction remediation technology is an efficient remediation method for organic contaminated soil. As there will be a certain gap between the heating well and the soil during the construction process, there is no clear guidance on whether to use backfill materials and the selection principle of backfill materials. Using experimental and numerical simulation methods, the influence of backfill materials in the in-situ thermal conduction heating remediation process was studied, and different heating temperatures (200, 400, 600, 800 ℃), backfill materials (air, original soil), and backfill thickness (40, 100, 150 mm) on heat transfer. The results showed that the in-situ thermal conduction heating numerical prediction model based on experimental data was reliable, and the minimum average relative error between the simulated calculated value and the measured value was 6.69%; when the heating temperature was higher than 450 ℃, the heat transfer effect was better without backfill; when the heating temperature was less than 300 ℃, it was better to backfill with soil; at 300~450 ℃, the heat transfer effect with or without filler was not obvious; in the application process of the in-situ thermal conduction heating remediation technology engineering, the heat transfer effect was best when the thickness of the backfill material was 100 mm. The results of this study can provide a reference for the engineering practice of in-situ thermal conduction heating remediation of contaminated soil.
-
表 1 实验工况表
Table 1. Experimental condition table
工况编号 回填材料种类 加热温度/℃ Ex-1 空气 200 Ex-2 空气 400 Ex-3 空气 600 Ex-4 空气 800 Ex-5 土壤 200 Ex-6 土壤 400 Ex-7 土壤 600 Ex-8 土壤 800 表 2 数值模拟工况表
Table 2. Numerical simulation condition table
工况编号 回填材料种类 回填厚度/mm 加热温度/℃ 工况编号 回填材料种类 回填厚度/mm 加热温度/℃ Sim-1 空气 40 200 Sim-13 土壤 40 200 Sim-2 空气 40 400 Sim-14 土壤 40 400 Sim-3 空气 40 600 Sim-15 土壤 40 600 Sim-4 空气 40 800 Sim-16 土壤 40 800 Sim-5 空气 100 200 Sim-17 土壤 100 200 Sim-6 空气 100 400 Sim-18 土壤 100 400 Sim-7 空气 100 600 Sim-19 土壤 100 600 Sim-8 空气 100 800 Sim-20 土壤 100 800 Sim-9 空气 150 200 Sim-21 土壤 150 200 Sim-10 空气 150 400 Sim-22 土壤 150 400 Sim-11 空气 150 600 Sim-23 土壤 150 600 Sim-12 空气 150 800 Sim-24 土壤 150 800 表 3 数值模拟参数表
Table 3. Numerical simulation parameter table
供试参数 设定值 供试参数 设定值 土壤导热系数ks 0.41 W·(m·K)−1 不锈钢表面发射率ε 0.1 土壤恒压热容Cs 0.84 kJ·(kg·K)−1 空气吸收系数к 15 m−1 土壤密度ρs 1 850 kg·m−3 土壤容器直径D 0.82 m 空气导热系数ka 0.07 W·(m·K)−1 土壤容器高度 h 0.60 m 空气恒压热容Ca 1.12 kJ·(kg·K)−1 加热棒直径 d 0.04 m 空气密度ρa 1.29 kg·m−3 环境温度 Text 293.15 K -
[1] XU H J, LI Y Z, GAO L J, et al. Planned heating control strategy and thermodynamic modeling of a natural gas thermal desorption system for contaminated soil[J]. Energies, 2020, 13(3): 642. doi: 10.3390/en13030642 [2] 李书鹏, 焦文涛, 李鸿炫, 等. 热脱附技术修复有机污染场地研究与应用进展[J]. 环境工程学报, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108 [3] LACHANCE J, COM J T, BAKER R S, et al. Application of 'thermal conductive heating/in-situ thermal desorption (ISTD)'to the remediation of chlorinated volatile organic compounds in saturated and unsaturated settings[C]//Proceedings of Battelle’s Conference on Remediation of Chlorinated and Recalcitrant Compounds, Columbus, 2004: 1-8. [4] HERON G, PARKER K, GALLIGAN J, et al. Thermal treatment of eight CVOC source zones to near nondetect concentrations[J]. Ground Water Monitoring and Remediation, 2009, 29(3): 56-65. doi: 10.1111/j.1745-6592.2009.01247.x [5] BAKER R S, HERON G, LACHANCE J. 2-D physical models of thermal conduction heating for remediation of DNAPL source zones in aquitards[C]//Consoil 2008. 2008: 1-10. [6] XIE Q, MUMFORD K G, KUEPER B H. Modelling gas-phase recovery of volatile organic compounds during in situ thermal treatment[J]. Journal of Contaminant Hydrology, 2020, 234: 103698. doi: 10.1016/j.jconhyd.2020.103698 [7] YU Y, LIU L, YANG C, et al. Removal kinetics of petroleum hydrocarbons from low-permeable soil by sand mixing and thermal enhancement of soil vapor extraction[J]. Chemosphere, 2019, 236: 124319. doi: 10.1016/j.chemosphere.2019.07.050 [8] DAVIS R J, LILJESTRAND H M, KATZ L E. Evidence for multiple removal pathways in low-temperature (200-400℃) thermal treatment of pentachlorophenol-laden soils[J]. Journal of Hazardous Materials, 2020, 400: 122870. doi: 10.1016/j.jhazmat.2020.122870 [9] STEGEMEIER G L, VINEGAR H J. Thermal Conduction Heating Conduction Heating for In-Situ Thermal Desorption of Soils[M]. Florida: CRC Press, 2001:1-37. [10] DING D, SONG X, WEI C, et al. A review on the sustainability of thermal treatment for contaminated soils[J]. Environmental Pollution, 2019, 253: 449-463. doi: 10.1016/j.envpol.2019.06.118 [11] 洪顺军, 杜卫, 刘永红, 等. 地源热泵地埋管换热器传热特性影响因素分析[J]. 制冷与空调, 2016, 30(4): 441-445. [12] 杜红普, 李敏, 王恩宇. 高温下饱和回填材料的换热特性研究[J]. 太阳能学报, 2017, 38(1): 172-179. [13] XU J, WANG F, SUN C, et al. Gas thermal remediation of an organic contaminated site: field trial[J]. Environmental Science and Pollytion Research, 2019, 26(6): 6038-6047. doi: 10.1007/s11356-018-4027-2 [14] JIN H, GUO Y, DENG H, et al. A simulation model for coupled heat transfer and moisture transport under the action of heat source in unsaturated soils[J]. Scientific Reports, 2018, 8(1): 7750. doi: 10.1038/s41598-018-26108-x [15] JIAO Q W, ZHANG Y T. Modeling and simulation of heat and moisture transfer of the geothermal borehole[J]. //26th Chinese Control and Decision Conference (2014 CCDC), 2014: 3347-3351. [16] AHMAD S, RIZVI Z, ARSALAN K M, et al. Experimental study of thermal performance of the backfill material around underground power cable under steady and cyclic thermal loading[J]. Materials Today:Proceedings, 2019, 17: 85-95. doi: 10.1016/j.matpr.2019.06.404 [17] 贺永智, 徐旭, 吕玲, 等. 覆土层含水率对直埋式电缆散热特性的影响研究[J]. 中国计量大学学报, 2019, 30(4): 427-433. [18] LI Z, WANG W W. Main existing problems and respective countermeasures of ground-source heat pump technique applications[J]. Applied Mechanics and Materials, 2013, 433-435: 2327-2330. doi: 10.4028/www.scientific.net/AMM.433-435.2327 [19] 王恩琦, 黄体士, 张方方, 等. 回填材料对地源热泵系统换热效率的影响分析[J]. 制冷与空调, 2019, 33(3): 240-244. [20] LIU L, CAI G, LIU X, et al. Evaluation of thermal-mechanical properties of quartz sand-bentonite-carbon fiber mixtures as the borehole backfilling material in ground source heat pump[J]. Energy and Buildings, 2019, 202: 109407. [21] 刘湘云, 陈颖, 赖康平, 等. 地源热泵埋地换热器回填土的实验研究[J]. 流体机械, 2007(8): 60-62. doi: 10.3969/j.issn.1005-0329.2007.08.016 [22] 雷彦鹏. 地源热泵工程固废基回填材料的研发与应用研究[D]. 济南: 山东大学, 2020. [23] MCWATTERS R S, ROWE R K, WILKINS D, et al. Modelling of vapour intrusion into a building impacted by a fuel spill in Antarctica[J]. Journal of Environmental Management, 2019, 231: 467-482. doi: 10.1016/j.jenvman.2018.07.092 [24] 赵小丽. 土壤源热泵竖直埋管换热特性管内外耦合的三维动态编程数值研究[D]. 西安: 长安大学, 2016. [25] 吴晅, 梁思源, 郑明杰, 等. 套管式地埋管换热器传热特性数值模拟[J]. 重庆理工大学学报(自然科学), 2020, 34(12): 226-236.