-
有机碳和元素碳是大气颗粒物(包括PM2.5和PM10)的主要组成部分,其质量浓度总和分别占PM2.5和PM10的30%—50%和25%—40%[1]。OC是数百种有机化合物的混合物,其中一些是致癌物质,如多环芳烃和多氯联苯等[2]。流行病学研究表明,碳质气溶胶含量的增加与心血管病死亡率和发病率的相关性显著[3]。OC主要是由人为或生物成因直接排放到空气中的一次有机碳(POC),和通过气态有机前体物与氧化物的反应凝结或附积到颗粒物上形成的二次有机碳组成[4-5],SOC的相对贡献很难通过化学分析直接量化,通常使用Turpin等[6]的EC示踪法和Castro等[7]提出的最小值法进行SOC的估算。EC主要由含碳燃料不完全燃烧产生,只存在于由污染源直接排放的一次气溶胶中,通常作为人为源一次排放的示踪物[8]。
碳质气溶胶对人类健康和环境有着复杂的影响,研究学者对碳质气溶胶的关注日益增加。Wang等[9]对郑州市大气碳质气溶胶的研究发现,PM2.5和PM10年平均浓度分别为146 μg·m−3和214 μg·m−3,分别超过国家环境空气二级年均质量标准[10](PM2.5:35 μg·m−3,PM10:70 μg·m−3)的4倍和3倍;PM2.5和PM10中秋、冬季SOC/OC比值高于春、夏季;TCA/PM2.5为32%,TCA/PM10为30%,表明郑州市大气颗粒物污染严重,碳质气溶胶是其的重要组成部分。对南京工业区[11]研究发现,PM2.5和PM10呈现出与郑州市类似的季节变化特征,夏季台风频发,冬季燃煤取暖和逆温天气频发,PM2.5和PM10质量浓度最低值在夏季,最高值在冬季;PM2.5/PM10年均值达到67%,OC、EC占PM2.5的比例分别为12.7%和4.8%;占PM10的比例分别为8.3%和3.1%,表明南京工业区以PM2.5污染为主。天津市[12]冬季PM2.5中OC、EC的相关系数为0.95,表明OC、EC的来源相对简单,来源可能是燃煤和机动车。由于大气结构的不稳定性,一个地区或城市的空气污染不仅与当地的排放有关,还与周边地区存在相互影响和输送关系[13]。Yu等[14]研究墨西哥市碳质气溶胶污染特征发现,EC和OC(包括POC和SOC)受区域输送和气象条件的影响,EC和POC分别与CO、NO和NOx有很强的相关性,表明当地交通排放是主要影响因素;OC和SOC与O3和NO2之间也存在相关性,进一步证实了SOC污染非常严重。Cao等[15]对碳质气溶胶研究发现,受到季风和天气系统的影响,OC和EC的浓度在夏季低于冬季,夏季西南风从海洋(南海和太平洋)带来更清洁的海洋气溶胶,而冬季东北风从中国大陆带来受污染的气团。Samara等[16]利用后向轨迹和浓度玫瑰图研究了碳质气溶胶的来源,发现OC和EC浓度与当地排放源和气象条件相关性强。
邯郸市是以钢铁、电力、水泥和焦炭为主的典型重工业城市,且位于山西、山东、河南和河北四省交汇地,是大气污染的频发区和重灾区,但针对邯郸市碳质气溶胶的研究较少。为此,本研究于2016年在邯郸市四大国控点之一(矿院)采样点,对PM2.5和PM10颗粒进行采集,研究了PM2.5和PM10中碳质气溶胶的污染水平和季节特征;OC/EC的比值特征及其相关性;估计SOC及其对OC的贡献;结合同期的气象数据和气态污染物浓度,分析与碳组分的相关性和气团轨迹来源,为有效控制邯郸市大气中的碳质气溶胶提供数据基础,同时,2017年河北省全面实施农村气代煤、电代煤改造工程,2016年的研究结果对后期的政策制定及污染控制措施的检验可以提供很好的数据支撑和检验。
邯郸市PM2.5和PM10中有机碳与元素碳的污染特征
Pollution characteristics of organic carbon and elemental carbon in PM2.5 and PM10 of Handan City
-
摘要: 为了研究邯郸市PM2.5和PM10中有机碳(OC)与元素碳(EC)的污染特征,于2016年1月—10月对邯郸市大气PM2.5和PM10样品进行采集,运用热光反射法(TOR)分析了样品中的OC、EC的质量浓度,同时对OC和EC浓度水平与季节变化、OC/EC的比值特征及其相关性、二次有机碳(SOC)的估算、碳组分与气态污染物及气象因素的相关性和碳质气溶胶来源进行分析。结果表明,邯郸市PM2.5和PM10的质量浓度均呈现冬季>春季>秋季>夏季的规律,PM2.5和PM10中OC质量浓度均值为20.8 μg·m−3和34.9 μg·m−3,EC质量浓度均值为6.6 μg·m−3和10.9 μg·m−3;OC、EC对邯郸市PM2.5质量浓度的年均贡献率分别为24.0%和7.0%,对PM10质量浓度的年均贡献率分别为18.7%和5.9%;总碳气溶胶(TCA)占PM2.5的比重为45.4%,TCA/PM10为35.8%,碳质气溶胶是邯郸市PM2.5的重要组成部分;PM2.5和PM10中OC/EC年均值分别为3.6和3.4,各季OC/EC比值均大于2,表明邯郸全年均存在SOC污染;PM2.5和PM10中SOC浓度在秋季和冬季相对较高,春季和夏季较低;SOC对PM2.5和PM10的贡献率分别为11.7%和7.3%.OC、EC和SOC与SO2和NO2呈显著正相关,表明邯郸市大气环境常年受燃煤和机动车尾气排放影响。后向轨迹分析得出,研究期间到达邯郸市的气团主要来自我国东北、西北和东南地区;颗粒物浓度雷达图分析,颗粒物、OC和EC可能与西北风向的关联性更强,表明当地西部工业区和高度城市化对当地碳质气溶胶的污染有一定的贡献。
-
关键词:
- PM2.5和PM10 /
- 有机碳 /
- 元素碳 /
- 二次有机碳 /
- 污染特征
Abstract: To study the pollution characteristics of carbonaceous aerosols, PM2.5 and PM10 samples were collected in Handan from January to October, 2016. Thermal optical reflection (TOR) was used to analyze the mass concentrations of organic carbon (OC) and elemental carbon (EC) in the PM2.5 and PM10 samples. The characteristics including pollution level and seasonal variation of OC, EC, OC/EC ratio, correlation between OC and EC, estimation of secondary organic carbon (SOC), relationship between carbon components and gaseous pollutants with meteorological factors, and possible sources of OC and EC, were investigated. Results showed that the mass concentrations of PM2.5 and PM10 displayed seasonal variation as winter > spring > autumn > summer. The mean of OC concentrations in PM2.5 and PM10 were 20.8 μg·m−3 and 34.9 μg·m−3, respectively, while EC were 6.6 μg·m−3 and 10.9 μg·m−3, respectively. The average annual contribution rate of OC to PM2.5 was 24.0%, and it is 7.0% for EC. The contribution values to PM10 were 18.7% and 5.9%, respectively. Total carbonaceous aerosol (TCA) accounted for 45.4% and 35.8% in PM2.5 and PM10, respectively, suggested that the pollution of carbonaceous aerosol was serious in fine particles. The average annual OC/EC ratios of PM2.5 and PM10 were 3.6 and 3.4, respectively. The ratios of OC/EC in four seasons were all larger than 2, which indicated that SOC were formed. The seasonal characteristics of SOC in PM2.5 and PM10 were ranked by the order of winter > autumn > spring > summer. The average mass fractions of SOC in PM2.5 and PM10 were estimated to be 11.7% and 7.3%, respectively. OC, EC and SOC were positively correlated with SO2 and NO2, which implicated that the air environment in Handan was affected by the emission of coal combustion and vehicle exhaust all the year round possibly. The air parcel back trajectory and concentration radar chart approaches were applied to investigate the source of carbonaceous aerosols. Back trajectory analysis suggested that the air masses reached to Handan during the study periods mainly came from the northeast, northwest and southeast China. The research of concentration radar chart showed that particulate material, OC and EC may have stronger correlation with the northwest wind direction, which indicated that the industrial area and high urbanization in the west region had a certain contribution to the pollution of local carbon aerosol. -
表 1 采样期间气态污染物和气象参数
Table 1. Gaseous pollutants and meteorological parameters during sampling periods
组分Components 冬Winter 春Spring 夏Summer 秋Autumn 全年Annual SO2/(μg·m−3) 87.4 38.9 14.2 31.5 40.1 CO/(mg·m−3) 2.3 1.2 1.3 1.3 1.5 NO2/(μg·m−3) 60.6 58.4 40.2 60.9 55.0 O3/(μg·m−3) 35.0 61.5 66.8 45.2 52.0 温度/℃ -2.7 18.0 26.9 19.2 16.4 相对湿度/% 40.3 49.3 71.5 64.8 58.3 风速/(m·s−1) 2.1 2.5 1.6 1.8 2.0 表 2 PM2.5、PM10、OC、EC的质量浓度及占比分数
Table 2. Mass concentration and percentage of PM2.5, PM10, OC and EC
组分
Components冬Winter 春Spring 夏Summer 秋Autumn 全年Annual PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM/(μg·m−3) 122.6 224.6 99.9 215.0 77.7 136.3 88.4 165.4 95.0 180.2 OC/(μg·m−3) 35.6 70.3 15.8 28.1 11.4 17.7 21.9 30.7 20.8 34.9 EC/(μg·m−3) 10.4 21.1 5.9 9.2 4.4 5.4 6.4 9.9 6.6 10.9 TC/(μg·m−3) 46.0 91.4 21.7 37.3 15.8 23.1 28.3 40.6 27.4 45.8 TCA/(μg·m−3) 67.3 133.6 31.2 54.1 22.7 33.7 41.5 59.0 39.8 66.8 OC/EC 4.4 3.2 2.9 3.5 2.8 3.6 4.1 3.3 3.6 3.4 (OC/TC)/% 78.7 75.1 73.5 76.4 72.5 77.1 77.9 75.4 75.8 76.0 (EC/TC)/% 21.3 24.9 26.5 23.6 27.5 22.9 22.2 24.6 24.2 24.0 (TCA/PM)/% 54.2 56.3 35.6 25.7 31.8 25.2 56.4 37.6 45.4 35.8 (OC/PM)/% 29.2 29.2 18.3 13.5 16.2 13.3 30.3 19.6 24.0 18.7 (EC/PM)/% 7.5 9.6 6.3 4.2 5.9 3.9 8.0 6.2 7.0 5.9 OC2.5/OC10/% 52.7 56.4 65.7 70.7 62.8 EC2.5/EC10/% 44.3 67.6 85.9 61.6 65.5 PM2.5/PM10/% 53.3 45.8 56.6 50.0 51.5 表 3 SOC浓度及其对OC和PM质量的贡献
Table 3. SOC concentration and its contribution to OC and PM
组分
Components冬Winter 春Spring 夏Summer 秋Autumn 全年Annual PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 (OC/EC)min 1.6 2.4 2.1 1.8 1.9 1.6 1.8 1.9 1.6 1.6 SOC/(μg·m−3) 19.9 20.7 3.6 12.8 3.1 9.3 10.8 12.4 9.2 13.4 (SOC/OC)/% 57.4 20.2 25.4 47.6 27.8 52.5 48.8 38.8 40.4 40.4 (SOC/PM)/% 18.1 6.5 5.5 6.6 5.3 7.3 16.4 8.1 11.7 7.3 表 4 OC、EC、SOC与气态污染物及气象参数相关性
Table 4. Correlation of OC, EC, SOC with gaseous pollutants and meteorological parameters
季节
Seasons碳组分
Carbon
componentsSO2 NO2 O3 温度
Temperature相对湿度
Relative
humidity风速
Wind
speed全年Annual PM2.5−OC 0.737** 0.528** −0.332** −0.538** −0.133 −0.234* PM2.5−EC 0.761** 0.726** −0.386** −0.390** −0.084 −0.182 PM2.5−SOC 0.555** 0.238* −0.229* −0.532** −0.133 −0.201 PM10−OC 0.806** 0.494** −0.284* −0.575** −0.250* −0.153 PM10−EC 0.877** 0.643** −0.422** −0.691** −0.227* −0.148 PM10−SOC 0.498** 0.301** −0.110 −0.264* −0.119 −0.208 冬季Winter PM2.5−OC 0.759** 0.597* −0.270 −0.003 −0.009 −0.540* PM2.5−EC 0.896** 0.946** −0.424 0.404 −0.116 −0.264 PM2.5−SOC 0.470 0.233 −0.095 −0.235 0.031 −0.519* PM10−OC 0.817** 0.663** −0.270 0.057 −0.073 −0.505* PM10−EC 0.862** 0.833** −0.463 0.185 −0.106 −0.481 PM10−SOC 0.678** 0.446 −0.129 −0.189 −0.030 −0.551* 春季Spring PM2.5−OC 0.707** 0.920** −0.680** −0.437 0.515* −0.543* PM2.5−EC 0.701** 0.884** −0.660** −0.482 0.686** −0.418 PM2.5−SOC −0.138 −0.067 0.105 0.174 −0.573* −0.279 PM10−OC 0.690** 0.910** −0.666** −0.343 0.455 −0.416 PM10−EC 0.627** 0.798** −0.572* −0.373 0.658** −0.253 PM10−SOC 0.321 0.549* −0.349 −0.164 −0.094 −0.483 夏季Summer PM2.5−OC 0.309 0.441 0.101 −0.276 −0.143 −0.263 PM2.5−EC 0.004 0.671** −0.387 −0.543* 0.346 −0.625** PM2.5−SOC 0.238 −0.504* 0.597** 0.465* −0.572* 0.596** PM10−OC 0.418 0.581** 0.044 −0.365 −0.070 −0.272 PM10−EC 0.040 0.686** −0.386 −0.615** 0.352 −0.707** PM10−SOC 0.545* −0.245 0.683** 0.442 −0.759** 0.481* 秋季Autumn PM2.5−OC 0.240 0.595** −0.360 −0.181 0.490* −0.380 PM2.5−EC 0.417* 0.762** −0.373 −0.070 0.456* −0.318 PM2.5−SOC −0.076 0.196 −0.241 −0.176 0.385 −0.248 PM10−OC 0.266 0.611** −0.307 −0.130 0.392* −0.286 PM10−EC 0.593** 0.825** −0.372 −0.137 0.461* −0.392* PM10−SOC −0.129 0.155 −0.192 −0.181 0.286 −0.139 注:**.在0.01水平(双侧)上显著相关。*.在0.05水平(双侧)上显著相关.
Note: * *. Correlation is significant at 0.01 level (bilateral). *. Correlation is significant at 0.05 level (bilateral). -
[1] PUTAUD J P, RAES F, DINGENEN R V, et al. A European aerosol phenomenology-2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe [J]. Atmospheric Environment, 2004, 38(16): 2579-2595. doi: 10.1016/j.atmosenv.2004.01.041 [2] LI H R, FENG H L, SHENG G Y, et al. The PCDD/F and PBDD/F pollution in the ambient atmosphere of Shanghai, China [J]. Chemosphere, 2008, 70(4): 576-583. doi: 10.1016/j.chemosphere.2007.07.001 [3] ITO K, MATHES R, ROSS Z, et al. Research fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in New York city [J]. Environmental Health Perspectives, 2010, 119(4): 467-473. [4] JONES A M, HARRISON R M. Interpretation of particulate elemental and organic carbon concentrations at rural, urban and kerbside sites [J]. Atmospheric Environment, 2005, 39(37): 7114-7126. doi: 10.1016/j.atmosenv.2005.08.017 [5] SAYLOR R, EDGERTON E, HARTSELLl B. Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation [J]. Atmospheric Environment, 2006, 40(39): 7546-7556. doi: 10.1016/j.atmosenv.2006.07.018 [6] TURPIN B J, HUNTIZICKER J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS [J]. Atmospheric Environment, 1995, 29(23): 3527-3544. doi: 10.1016/1352-2310(94)00276-Q [7] CASTRO L M, PIO C A, HARRISON R M, et al. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations [J]. Atmospheric Environment, 1999, 33(17): 2771-2781. doi: 10.1016/S1352-2310(98)00331-8 [8] TURPIN B J, HUNTIZICKER J J. Secondary formation of organic aerosol in the Los Angeles basin: A descriptive analysis of organic and elemental carbon concentrations [J]. Atmospheric Environment. Part A:General Topics, 1991, 25(2): 207-215. doi: 10.1016/0960-1686(91)90291-E [9] WANG Q, JIANG N, YIN S S, et al. Carbonaceous species in PM2.5 and PM10 in urban area of Zhengzhou in China: Seasonal variations and source apportionment [J]. Atmospheric Research, 2017, 191(7): 1-11. [10] GB3095—2012 环境空气质量标准[S]. 北京: 中国标准出版社, 2012. GB3095—2012 Ambient air quality standards[S]. China Standards Press, 2012 (in Chinese).
[11] 鲍孟盈. 南京北郊工业区碳质气溶胶污染特征及生物质燃烧的影响研究[D]. 南京: 南京信息工程大学, 2017. BAO Y Y. Study on the characteristics of carbonaceous areosols in the industrial area in Northern Nanjing and the effect of biomass buring[D]. Nanjing: Nanjing University of Information Science &Technology, 2017 (in Chinese).
[12] 古金霞, 白志鹏, 刘爱霞, 等. 天津冬季PM2.5与PM10中有机碳、元素碳的污染特征 [J]. 环境污染与防治, 2009, 31(8): 33-36. doi: 10.3969/j.issn.1001-3865.2009.08.009 GU J X, BAI Z P, LIU A X, et al. Pollution characteristics of OC and EC in PM2.5 and PM10 in Tianjin winter [J]. Environmental Pollution & Control, 2009, 31(8): 33-36(in Chinese). doi: 10.3969/j.issn.1001-3865.2009.08.009
[13] 王芳, 陈东升, 程水源, 等. 基于气流轨迹聚类的大气污染输送影响 [J]. 环境科学研究, 2009, 22(6): 637-642. WANG F, CHEN D S, CHENG S Y, et al. Impacts of air pollutant transport based on air trajectory clustering [J]. Research of Environmental Science, 2009, 22(6): 637-642(in Chinese).
[14] YU X Y, CARY R A, LAULAINEN N S. Primary and secondary organic carbon downwind of Mexico City [J]. Atmospheric Chemistry & Physics, 2009, 9(18): 6793-6814. [15] CAO J J, LEE S C, HO K E, et a1. Spatial and seasonal variations of atmospheric organic carbon an elemental carbon in Pearl River Delta Region, China [J]. Atmospheric Environment, 2004(38): 4447-4456. [16] SAMARA C, VOUTSA D, KOURAS A, et al. Organic and elemental carbon associated to PM10 and PM2.5 at urban sites of northern Greece [J]. Environmental Science & Pollution Research, 2014, 21(3): 1769-1785. [17] 马笑, 王丽涛, 马思萌, 等. 邯郸市PM2.5成分的时空分布特征及来源[J]. 环境化学, 2017, 36(9): 1932-1940. MA X, WANG L T, MA S M, et al. Spatial and temporal distribution and source analysis of components in PM2.5, Handan[J]. Environmental Chemistry. 2017, 36(9): 1932-1940(in Chinese).
[18] 张霞. 2013-2014年邯郸市大气污染特征及变化研究[D]. 邯郸: 河北工程大学, 2015. ZHANG X. A research on characteristics and variations of air pollution in Handan from 2013 to 2014[D]. Handan: Hebei University of Engineering, 2015 (in Chinese).
[19] 施学美, 李学德, 魏桢, 等. 合肥市春季大气PM10和PM2.5中碳组分的污染特征 [J]. 环境监测管理与技术, 2015, 27(6): 27-32. doi: 10.3969/j.issn.1006-2009.2015.06.008 SHI X M, LI X D, WEI Z, et al. Pollution characteristics of organic carbon and elemental carbon in PM10 and PM2.5 sampled in Hefei during the spring [J]. The Administration and Technique of Environmental Monitoring, 2015, 27(6): 27-32(in Chinese). doi: 10.3969/j.issn.1006-2009.2015.06.008
[20] HARRISON R M, YIN J. Sources and processes affecting carbonaceous aerosol in central England [J]. Atmospheric Environment, 2008, 42(7): 1413-1423. doi: 10.1016/j.atmosenv.2007.11.004 [21] PANDIS S N, HARLEY R A, CASS G R, et a1. Secondary organic aerosol formation and transport [J]. Atmospheric Environment Part A General Topics, 1992, 26(13): 2269-2282. doi: 10.1016/0960-1686(92)90358-R [22] ODUM J R, HOFFMANN T, BOWMAN F, et al. Gas/particle partitioning and secondary organic aerosol yields [J]. Environmental Science & Technology, 1996, 30(8): 2580-2585. [23] TURPIN B J, LIM H J. Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass [J]. Aerosol Science and Technology, 2001, 35(1): 602-610. doi: 10.1080/02786820119445 [24] PIO C, CERQUEIRA M, HARRISON R M, et al. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon [J]. Atmospheric Environment, 2011, 45(34): 6121-6132. doi: 10.1016/j.atmosenv.2011.08.045 [25] LIN J J, TAI H S. Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung city, Taiwan [J]. Atmospheric Environment, 2001, 35(15): 2627-2636. doi: 10.1016/S1352-2310(00)00444-1 [26] PLAZA J, ARTINANO B, SALVADOR P, et al. Short-term secondary organic carbon estimations with a modified OC/EC primary ratio method at a suburban site in Madrid (Spain) [J]. Atmospheric Environment, 2011, 45(15): 2496-2506. doi: 10.1016/j.atmosenv.2011.02.037 [27] LI P H, HAN B, HUO J, et al. Characterization, meteorological influences and source identification of carbonaceous aerosols during the autumn-winter period in Tianjin, China [J]. Aerosol & Air Quality Research, 2012, 12(2): 283-294. [28] LONATI G, OZGEN S, GIUGLIANO M. Primary and secondary carbonaceous species in PM2.5 samples in Milan (Italy) [J]. Atmospheric Environment, 2007, 41(22): 4599-4610. doi: 10.1016/j.atmosenv.2007.03.046 [29] STRADER R, LURMANN F, PANDIS S N. Evaluation of secondary organic aerosol formation in winter [J]. Atmospheric Environment, 1999, 33(29): 4849-4863. doi: 10.1016/S1352-2310(99)00310-6 [30] TURPIN B J, CARY R A, HUNTZICKER J J. An in situ, time-resolved analyzer for aerosol organic and elemental carbon [J]. Aerosol Science and Technology, 1990, 12(1): 161-171. doi: 10.1080/02786829008959336 [31] 张婷婷, 马文林, 亓学奎, 等. 北京城区PM2.5有机碳和元素碳的污染特征及来源分析 [J]. 环境化学, 2018, 37(12): 2758-2766. doi: 10.7524/j.issn.0254-6108.2018051701 ZHANG T T, MA W L, QI X K, et al. Characteristics and sources of organic carbon and element carbon in PM2.5 in the urban areas of Beijing [J]. Environmental Chemistry, 2018, 37(12): 2758-2766(in Chinese). doi: 10.7524/j.issn.0254-6108.2018051701
[32] 薛凡利, 牛红亚, 武振晓, 等. 邯郸市PM2.5中碳组分的污染特征及来源分析 [J]. 中国环境科学, 2020, 40(5): 1885-1894. doi: 10.3969/j.issn.1000-6923.2020.05.004 XUE F L, NIU H Y, WU Z X, et al. Pollution characteristics and sources of carbon components in PM2.5 in Handan City [J]. China Environmental Science, 2020, 40(5): 1885-1894(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.05.004
[33] WANG H, KAWAMURA K, SHOOTER D. Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: Implications for solid fuel combustion [J]. Atmospheric environment, 2005, 39(32): 865-5875. [34] 邢雅婷, 王帅, 赵玲. 呼和浩特市城区大气污染物浓度变化特征分析 [J]. 环境化学, 2019, 38(5): 1139-1149. XING Y T, WANG S, ZHAO L. Variation characteristics of atmospheric pollutants in the urban area of Hohhot [J]. Environmental Chemistry, 2019, 38(5): 1139-1149(in Chinese).
[35] 刘鲁宁, 申雨璇, 辛金元, 等. 秦皇岛大气污染物浓度变化特征 [J]. 环境科学, 2013, 34(6): 2089-2097. LIU L N, SHEN Y X, XIN J Y, et al. Variation of atmospheric pollutants in Qinhuangdao city [J]. Environmental Science, 2013, 34(6): 2089-2097(in Chinese).
[36] 王珏, 王郭臣, 陈莉. 济南市四季PM10、PM2.5输送来源及其传输过程 [J]. 环境科学与技术, 2015, 38(5): 175-182. WANG J, WANG G C, CHEN L. Transportation source and transportation process of PM10 and PM2.5 in seasons of Jinan [J]. Environmental Science & Technology, 2015, 38(5): 175-182(in Chinese).