-
啤酒废水是一种高浓度有机废水,主要污染物为高浓度的糖类、醇类等有机物,COD、BOD5浓度分别为1 000~2 500、600~1 500 mg/L[1],如果不经处理,直接排入自然水体会消耗大量的溶解氧,造成严重的环境污染。我国的啤酒产销量已连续多年位居世界第一[2],啤酒在酿造和罐装等过程中会产生大量废水,我国每年啤酒废水总量可达2.5亿t。啤酒废水处理通常采用厌氧与好氧结合[3]、水解酸化-接触氧化[4]、UASB[5]等工艺,这些工艺可有效地去除废水中的污染物,但会产生大量的剩余污泥,增加下游剩余污泥处置费用。因此,找到一种既可以高效去除啤酒废水中的高浓度有机污染物,又可以实现污染物资源化回收的工艺具有非常重要的现实意义。
光合细菌(Photosynthetic Bacteria,PSB)是一种广泛分布于水、土壤和活性污泥等自然和人工环境的原核生物,可以利用光能和各种碳氮源生长[6]。PSB能够耐受较高的有机负荷,并能实现多种废水中污染物的生物资源化[7],现已在大豆加工[8]、淀粉发酵[9]、养殖业[10]和啤酒生产等行业废水处理中成功应用。袁盈波等[11]从养殖场底泥中分离出一株外硫红螺菌,其对畜禽废水和鱼粉废水中硫化物去除率分别为68.55%和56.15%。戴晓等[12]利用Rhodopseudomonas sphaeroides Z08探讨不同光氧条件下啤酒废水的资源化应用。
本文利用1株具有污染物同步去除能力的厌氧光合细菌Ectothiorhodospira sp. SU6,通过调节初始碳源和氮磷含量等参数优化其对模拟啤酒废水中污染物的去除与光合细菌生物质的回收,同时进一步探索了Ectothiorhodospira sp. SU6的潜在功能性,为啤酒废水的处理和资源回收提供新的选择。
厌氧光合菌SU6处理模拟啤酒废水及生物质转化
Treatment and bioconversion of simulated brewery wastewater by anaerobic photosynthetic strain SU6
-
摘要: 光合细菌(Photosynthetic Bacteria,PSB)可以在去除污水中有机污染物的同时,将其转化为具有高附加值的生物质。该研究通过批次实验探讨了不同碳源、氮源和磷源浓度对厌氧光合细菌外硫红螺菌属的新菌株(Ectothiorhodospira sp. SU6)处理模拟啤酒废水和生物质转化的影响。结果表明,模拟啤酒废水中COD、NH3-N、TP浓度均对光合细菌的生长,污染物去除效率和生物质转化效率具有显著影响。COD浓度2 000 mg/L,外加氮源100 mg/L、磷源40 mg/L时,菌株SU6的啤酒废水生物质转化效果最佳,培养96 h后COD、NH3-N和TP去除率分别为57.0%、82.7%和50.7%,细胞生物质OD600值为1.28,实现了模拟啤酒废水碳氮磷同步去除和生物质的高效转化。
-
关键词:
- 光合细菌 /
- Ectothiorhodospira /
- 模拟啤酒废水 /
- 生物质转化 /
- 效率提升
Abstract: Photosynthetic bacteria (PSB) have the ability to remove the organic pollutants in sewage, at the same time, which can convert them into biomass with a high value. The effects of different initial concentration of carbon, nitrogen and phosphorus sources on the treatment of simulated brewery wastewater and biomass conversion by anaerobic photosynthetic strain Ectothiorhodospira sp. SU6 were investigated. The concentration and proportion of COD, NH3-N and TP in simulated brewery wastewater had a significant influence on the growth of the strain SU6, pollutants removal and biomass conversion. The optimal pollutant removal with a highest biomass conversion was obtained with the initial COD concentration of 2 000 mg/L, nitrogen of 100 mg/L and phosphorus of 40 mg/L. After 96 hours cultivation, the COD, NH3-N and TP removal rates were 57%, 82.7% and 50.7%, respectively, and the biomass of OD600 was 1.28. The experimental results indicated that the pollutants removal and biomass conversion from simulated brewery wastewater could be accomplished by anaerobic photosynthetic strain Ectothiorhodospira sp. SU6. -
[1] 张翠英. 光合污泥在啤酒废水处理中的应用[J]. 环境科学导刊, 2016, 35(6): 75−77. [2] [s.n.] 2017年全球啤酒产量报告[J]. 中外酒业·啤酒科技, 2018(19): 1-4. [3] 郑平, 梅玲玲, Fogno Claude Jean. 喀麦隆啤酒废水厌氧生物处理的研究[J]. 太阳能学报, 2001, 22(2): 230 − 235. doi: 10.3321/j.issn:0254-0096.2001.02.024 [4] 刘义, 邵凯, 张兆昌. 水解酸化——SBR 工艺处理啤酒废水的试验研究[J]. 中国给水排水, 1997(S1): 22 − 25. [5] 王松林, 汪大庆. 内循环UASB反应器+氧化沟工艺在啤酒废水处理中的应用[J]. 工业用水与废水, 2001, 32(2): 23 − 24. doi: 10.3969/j.issn.1009-2455.2001.02.009 [6] 何春华. 光合细菌的分离鉴定和生长条件优化及应用初探[D]. 哈尔滨: 哈尔滨工业大学, 2009. [7] LU H, ZHANG G, DAI X, et al. A novel wastewater treatment and biomass cultivation system combining photosynthetic bacteria and membrane bioreactor technology[J]. Desalination, 2013, 322: 176 − 181. doi: 10.1016/j.desal.2013.05.007 [8] WU P, ZHANG G, LI J, et al. Effects of Fe2+ concentration on biomass accumulation and energy metabolism in photosynthetic bacteria wastewater treatment[J]. Bioresource Technology, 2012, 119: 55 − 59. doi: 10.1016/j.biortech.2012.05.133 [9] PRADTHANA P, CHART C, WILAI C, et al. Biomass production from fermented starch wastewater in photo-bioreactor with internal overflow recirculation[J]. Bioresource Technology, 2014, 165: 129 − 136. doi: 10.1016/j.biortech.2014.03.119 [10] WEN S, LIU H, HE H, et al. Treatment of anaerobically digested swine wastewater by Rhodobacter blasticus and Rhodobacter capsulatus[J]. Bioresource Technology, 2016, 222: 33 − 38. doi: 10.1016/j.biortech.2016.09.102 [11] 袁盈波, 潘志崇, 张德民. 一株光合细菌的分离及其硫化物的处理效果[J]. 宁波大学学报(理工版), 2010, 23(2): 1 − 5. [12] 戴晓, 张光明. 光合细菌(Z08)啤酒废水资源化研究[J]. 哈尔滨工业大学学报, 2010, 42(6): 937 − 940. doi: 10.11918/j.issn.0367-6234.2010.06.023 [13] ZHAO X, LI X J, QI N, et al. Enhancement of COD, ammonia, phosphate and sulfide simultaneous removal by the anaerobic photosynthetic bacterium of Ectothiorhodospira magna in batch and sequencing batch culture[J]. Water Science and Technology, 2018, 78(9): 1852 − 1860. doi: 10.2166/wst.2018.335 [14] 贾艳萍, 马姣, 贾心倩. 啤酒废水处理技术研究进展[J]. 中国酿造, 2013, 32(8): 5 − 9. doi: 10.3969/j.issn.0254-5071.2013.08.002 [15] 国家环境保护总局. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002. [16] WU P, ZHANG G, LI J. Mg2+ improves biomass production from soybean wastewater using purple non-sulfur bacteria[J]. Journal of Environmental Sciences, 2015, 28: 43 − 46. doi: 10.1016/j.jes.2014.05.040 [17] ZHOU Q, ZHANG P Y, ZHANG G M. Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of light sources[J]. Bioresource Technology, 2015, 179: 505 − 509. doi: 10.1016/j.biortech.2014.12.077 [18] YANG A Q, ZHANG G M, MENG F, et al. Nitrogen metabolism in photosynthetic bacteria wastewater treatment: A novel nitrogen transformation pathway[J]. Bioresource Technology, 2019, 294: 122162. doi: 10.1016/j.biortech.2019.122162