-
近年来,工业排水的成分日益复杂,传统的废水处理技术难以高效处理水体中的难降解污染物。高级氧化技术(advanced oxidation technologies, AOTs)是随着水处理技术发展与进步出现的新型技术,其特点是通过各种过程产生羟基自由基(·OH)及其他活性氧物种氧化环境中的难降解有机污染物,促使有机物最终氧化降解为CO2、H2O及其他无机离子,其具有减少甚至消除二次污染的优点。常用的处理难降解有机废水的高级氧化技术有Fenton法[1-2]、光催化法[3-4]、超临界水氧化法[5]、超声法[6-7]、低温等离子体法[8]等。介质阻挡放电等离子体(dielectric barrier discharge plasma,DBDP)作为低温等离子体的一种[9],是一种将绝缘介质插入放电空间的气体放电形式,由于放电电极与介质壁紧贴,放电电场强,可以产生高浓度的活性氧物质,包括O3、H2O2、·OH、·O、O2·−等,其中·OH的氧化性最强,是降解难降解有机污染物的主要物质。然而,该技术存在着能量利用率低、放电体系激发的光能和其他能量不能够被充分利用等缺点。因此,研发更高效的处理方法是该技术的主要发展方向之一。
已有研究表明,催化剂的添加可以实现对低温等离子体体系中不同物化效应的正向激活。陈颖[10]采用DBDP水上等离子协同TiO2 光催化术对17β-雌二醇进行了降解,处理30 min后,单独DBDP体系对17β-雌二醇去除率仅为72%,而向DBDP体系中投加TiO2光催化剂后17β-雌二醇的去除率提高了22%。王慧娟等[11]以酸性橙 II 作为目标污染物,建立了脉冲放电/活性炭协同脱色体系。在反应60 min后,脉冲放电/活性炭体系中染料的脱色效率较单独脉冲放电体系提高30%。SHEN等[8]研究了Fe2+协同脉冲放电降解苯酚的过程,结果表明,加入Fe2+比未加Fe2+时的苯酚降解率提高了24%。以上研究表明,低温等离子体协同催化技术可以应用于废水的处理,提高了废水处理的效率。
纳米氧化锌(ZnO)作为一种过渡金属氧化物,同TiO2半导体光催化材料类似,以高稳定性、价廉、无毒等优势在光催化领域里倍受青睐[12-13]。有研究证明,ZnO不仅可以催化O3生成·OH,进而以更快的速度氧化有机物[14-15],还可以催化H2O2生成·OH,有研究[16]发现,同等条件下的ZnO/H2O2光化学体系较TiO2/H2O2光化学体系对有机物具有更优的降解效果。结合DBDP作用过程紫外光、O3和H2O2各物理和化学效应共存的优势,本研究考虑将纳米ZnO引入DBDP反应体系,协同处理水体有机污染物,验证其催化作用及效果。与纳米TiO2的单纯光催化作用相比,纳米ZnO不仅可以充分利用DBDP体系的光效应,还可以与DBDP体系中产生的H2O2及O3作用,形成多效催化,促使放电体系中有更多的·OH生成,达到提高难降解有机污染物的处理效果的目的,同时提高DBDP体系的能量利用效率。
基于此,本研究以BPA这一典型的环境内分泌干扰物为目标污染物,建立了DBDP/ZnO协同水处理体系。考察了DBDP/ZnO协同体系中催化剂的添加量、载气种类、溶液初始pH对BPA降解率及能量利用效率的影响,同时考察了不同自由基捕获剂的对BPA降解的影响,以及体系中COD的去除和BPA溶液UV-vis光谱的变化,以期为该协同体系的进一步应用提供实验基础。
纳米氧化锌协同介质阻挡放电等离子体降解双酚A
Degradation of bisphenol A by dielectric barrier discharge plasma combined with nano-ZnO
-
摘要: 建立了介质阻挡放电等离子体(DBDP)和纳米氧化锌(ZnO)相协同的难降解有机物降解体系,以双酚A(bisphenol A, BPA)作为目标污染物,考察了协同体系中ZnO的不同添加浓度、不同载气种类、溶液不同初始pH对BPA降解效率及能量利用效率的影响,同时考察了在相同操作参数条件下,不同自由基捕获剂对BPA降解效果的影响规律,以说明不同活性氧物种在降解过程中的贡献情况,并测定了不同操作条件下溶液COD和UV-vis光谱的变化。结果表明:DBDP/ZnO协同体系中ZnO的最优添加浓度为50 mg·L−1,该操作条件下,反应40 min后,BPA的降解率为85.4%,能量利用率为0.32 g·(kWh)−1;当体系的初始pH为酸性、载气为氧气时,更利于BPA的降解;反应体系中·OH、 1O2、O2·–及电子浓度的减少均会削弱BPA的降解效果;催化剂的添加和载氧气条件有利于提高BPA的可生化性。以上研究结果对拓宽金属氧化物材料及低温等离子体水处理技术的应用范围具有一定的参考价值。
-
关键词:
- 介质阻挡放电等离子体 /
- 纳米氧化锌 /
- 协同体系 /
- 双酚A /
- 降解率
Abstract: A synergistic system of dielectric barrier discharge plasma (DBDP) and nano-zinc oxide (ZnO) for refractory organic compounds degradation was established in this study and the bisphenol A (BPA) was chosen as the target pollutant. The effects of ZnO addition concentrations, carrier gases and initial pH of the BPA solution on the BPA degradation effeciency and energy utilization efficiency in the synergistic system were investigated. Under the same operational conditions, the effect of different kinds of scavengers on the BPA degradation were studied to identify the contributions of different active oxygen species to above degradation. The variations of COD and the UV-vis under different operating conditions were also detected. The obtained results showed that the optimal ZnO adding amount in the DBDP/ZnO synergistic system was 50 mg·L−1, the corresponding degradation rate of the BPA was 85.4% and the energy utilization efficiency was 0.32 g·(kWh)−1 after 40min reaction; acidic solution and O2 bubbling were favorable for the BPA degradation; the reduction of ·OH, 1O2, O2·– and electrons in the reaction system could undermine the BPA degradation; the addition of the ZnO into the DBDP system and O2 bubbling were conducive to the enhancement of the biodegradability of the BPA. This research can provide reference for the broadening the application range of metal oxide materials and low temperature plasma water treatment technology. -
[1] 宋丽红, 李娟, 宛中华, 等. 类芬顿法降解环境内分泌干扰物双酚A的研究进展[J]. 重庆理工大学学报(自然科学版), 2014, 28(8): 64-70. [2] 刘春. 铁离子负载型电芬顿氧化降解双酚A的研究[D]. 青岛: 青岛科技大学, 2016. [3] 王光辉, 吴峰, 邓南圣. β-环糊精促进双酚A光催化降解[J]. 水处理技术, 2006, 32(9): 23-26. doi: 10.3969/j.issn.1000-3770.2006.09.006 [4] 杨红, 张克荣, 吴德生. 双酚A光催化降解研究[J]. 中国卫生检验杂志, 2002, 12(5): 521-522. doi: 10.3969/j.issn.1004-8685.2002.05.003 [5] 杨玉敏. 双酚A生产废水超临界催化氧化研究[D]. 天津: 天津大学, 2005. [6] 程治良, 全学军, 熊彦淇, 等. 循环式超声强化光催化降解双酚A[J]. 化工环保, 2013, 33(2): 93-97. doi: 10.3969/j.issn.1006-1878.2013.02.001 [7] 张可佳. 超声对水中双酚A的降解动力学及影响因素[J]. 同济大学学报(自然科学版), 2011, 39(11): 1652-1656. doi: 10.3969/j.issn.0253-374x.2011.11.016 [8] SHEN Y J, LEI L C, ZHANG X W, et al. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges[J]. Journal of Hazardous Materials, 2008, 150(3): 713-722. doi: 10.1016/j.jhazmat.2007.05.024 [9] JIANG B, YAN Z F, XUE Q Z, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236(2): 348-368. [10] 陈颖. 介质阻挡放电水上等离子协同Pt-TiO2光催化降解17β-雌二醇的研究[D]. 南宁: 广西大学, 2015. [11] 王慧娟, 郭贺, 杨文明, 等. 脉冲放电等离子体/活性炭协同降解染料废水及过氧化氢的生成[J]. 高电压技术, 2016, 42(5): 1401-1408. [12] 邓凡政, 杨睿, 祝爱霞, 等. 光催化降解染料ZnO催化剂的性能[J]. 化学研究与应用, 2005, 17(1): 89-90. doi: 10.3969/j.issn.1004-1656.2005.01.028 [13] 罗平, 李亚林, 曾召利, 等. 纳米ZnO光催化降解有机污染物的研究进展[J]. 重庆环境科学, 2009, 2(6): 22-27. [14] PARVIN G, ALI M. Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions[J]. Journal of Saudi Chemical Society, 2014, 18: 601-605. [15] ALIREZA K, MURAT K, SEMRA K, et al. Photocatalytic ozonation of metronidazole by synthesized zinc oxide nanoparticles immobilized on montmorillonite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74: 196-204. doi: 10.1016/j.jtice.2017.02.014 [16] HINDA L, CHANTAL G, HAYFA L, et al. Photochemical oxidation of styrene in acetonitrile solution in presence of H2O2, TiO2/H2O2 and ZnO/H2O2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346: 462-469. doi: 10.1016/j.jphotochem.2017.06.026 [17] 周小岩, 于建平, 刘彦民, 等. 不同形貌纳米ZnO的光催化性能研究[J]. 化工科技, 2014, 22(1): 7-11. doi: 10.3969/j.issn.1008-0511.2014.01.002 [18] 辛怡颖, 周律, 聂秋月, 等. 等离子体废水处理装置能量利用效率的评价方法[J]. 环境科学研究, 2014, 27(3): 328-333. [19] 杨文婷. 负载型ZnO光催化降解有机废水[J]. 化工技术与开发, 2018, 288(5): 51-53. [20] CHEN Y, SUN L, YU Z, et al. Synergistic degradation performance and mechanism of 17β-estradiol by dielectric barrier discharge non-thermal plasma combined with Pt-TiO2[J]. Separation and Purification Technology, 2015, 152: 46-54. doi: 10.1016/j.seppur.2015.07.061 [21] WANG L, SUN L, YU Z, et al. Synergetic decomposition performance and mechanism of perfluorooctanoic acid in dielectric barrier discharge plasma system with Fe3O4@SiO2-BiOBr magnetic photocatalyst[J]. Molecular Catalysis, 2017, 441: 179-189. doi: 10.1016/j.mcat.2017.08.014 [22] 田露. 纳米催化介质阻挡放电对X-BR染料废水的降解机理研究[D]. 上海: 东华大学, 2014. [23] MALIKM A, GHAFFAR A, MALIK S A. Water purification by electrical discharges[J]. Journal of Sound & Vibration, 2001, 247(5): 755-763. [24] SHEN Y, XU Q, GAO D, et al. Degradation of an anthraquinone dye by ozone/fenton: Response surface approach and degradation pathway[J]. Ozone Science & Engineering, 2017, 39(4): 1-14. [25] GUO H, JIANG N, WANG H, et al. Degradation of flumequine in water by pulsed discharge plasma coupled with reduced graphene oxide/TiO2 nanocomposites[J]. Separation and Purification Technology, 2019, 218: 206-216. doi: 10.1016/j.seppur.2019.03.001 [26] CHEN H, LIN L, ZHEN L, et al. Chemiluminescence arising from the decomposition of peroxymonocarbonate and enhanced by CdTe quantum dots[J]. Journal of Physical Chemistry A, 2010, 114(37): 10049-10058. doi: 10.1021/jp104060x [27] WANG T, JIA H, GUO X, et al. Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma[J]. Chemical Engineering Journal, 2018, 346: 65-76. doi: 10.1016/j.cej.2018.04.024 [28] GUO H, WANG H, WU Q, et al. Degradation and mechanism analysis of bisphenol A in aqueous solutions by pulsed discharge plasma combined with activated carbon[J]. Separation and Purification Technology, 2018, 190: 288-296. doi: 10.1016/j.seppur.2017.09.002 [29] JU P, FAN H, GUO D D, et al. Electrocatalytic degradation of bisphenol A in water on a Ti-based PbO2-ionic liquids (ILs) electrode[J]. Chemical Engineering Journal, 2012, 179(4): 99-106.