-
随着水质排放标准的提高,如何使脱氮更加经济有效受到社会各界的广泛关注。在众多方法中,生物硝化反硝化法是目前最理想的脱氮方法[1]。生物脱氮一般采用异养反硝化法。该方法通常存在碳源不足,须外加有机碳源的问题,运行成本高,且处理后存在二次污染风险[2-4]。相较于异养反硝化过程,自养反硝化法以硫自养反硝化研究居多,利用单质硫提供电子,在缺氧条件下达到氮还原的目的[5-7]。其主要具有以下优势:1)无须外加有机碳源,无二次污染问题;2)剩余污泥产量低,污泥处理成本显著降低[8-9];3)硫自养反硝化过程中N2O等温室气体产量低[10]。此外,硫自养反硝化也存在2点技术缺陷:一方面,硫自养反硝化过程中会产生H+,导致系统pH降低,须补充碱度以维持硫自养反硝化细菌生长最适pH[11];另一方面,产生的硫酸盐是须控制的环境污染物之一[12-13]。
近年来,有研究者针对2种反硝化存在的问题,在异养与硫自养反硝化的基础上,结合两者的优缺点,实现协同脱氮的目的[14-16]。李祥等[17]将单质硫投加至异养反硝化反应器中进行协同作用,污泥产量缩减一半,且无须外加碱度。陈川[18]利用自养/异养菌的协同作用进行反硝化脱硫,以单质硫为终产物,实现资源的回用。张超[19]向硫自养反硝化系统中适当投加碳源,研究了甲醇、乙醇2种碳源对硫自养/异养协同反硝化去除效果及最终产物的影响,达到了提高脱氮能力和抑制过多硫酸盐生成的效果。
硫自养反硝化效果在碳源投加后得到强化,但关于强化后的反硝化系统中自养和异养反硝化贡献度的研究相对较少。本研究在连续稳定运行的硫自养反硝化反应器内,投加少量碳源,实现硫自养/异养协同反硝化过程;通过分析投加碳源后的脱氮效果、碱度、硫酸盐和COD的变化,进一步探讨碳源强化硫自养过程脱氮效果,并对协同反硝化作用机制进行分析讨论,以期为更高效的脱氮处理提供参考。
碳源强化下的硫自养/异养反硝化协同作用
Synergistic analysis of sulfur autotrophic/heterotrophic denitrification under carbon source enhancement
-
摘要: 为强化硫自养反硝化过程,通过向连续稳定运行的硫自养反硝化反应器内投加少量碳源以进行强化,乙酸钠投加量分别为5.99、11.98、23.96 mg·L−1。分析投加前后反应器内硝氮、COD、硫酸根和耗碱量的变化;研究了碳源强化下硫自养反硝化运行效能及反应机理。结果表明,投加少量碳源可增强自养反硝化过程硝氮的去除效果;在3种碳源投加量条件下,COD的利用率均大于85%,但硫酸盐生成量并未减少;在5.99 mg·L−1碳源投加量下,系统实际耗碱量大于以硫酸根和COD计的理论耗碱量,而在11.98 mg·L−1和23.96 mg·L−1投加量下,实际耗碱量均介于2种理论值之间。在投加少量碳源后,自养反硝化脱氮效果明显提高,异养反硝化趋势随着碳源投加量的增加而增加。Abstract: In order to strengthen the process of sulfur autotrophic denitrification, a small amount of carbon source was added to the sulfur autotrophic denitrification reactor, and the dosage was 5.99, 11.98, 23.96 mg·L−1. Then the changes of nitrate nitrogen, COD, sulfate and alkali consumption in the reactor before and after the dosing were analyzed, the efficiency and reaction mechanism of sulfur autotrophic denitrification under carbon source enhancement were studied. The results showed that adding a small amount of carbon source dosing could enhance the nitrate removal effect during autotrophic denitrification process; the COD utilization ratios at three dosages of carbon resource were above 85%, but the yield of sulphate didn’t decrease. The actual alkali consumption of the system at the dosage of 5.99 mg·L−1 was more than the theoretical alkali consumption measured by sulfate and COD, while the actual alkali consumption at the dosages of 11.98 mg·L−1 and 23.96 mg·L−1 were between the two theoretical values. After adding carbon source, the efficiency of autotrophic denitrification was significantly improved, and the trend of heterotrophic denitrification increased with the increase of carbon source input.
-
表 1 碱度投加量对运行效能的影响实验配水水质
Table 1. Water component of the experiment impact of different alkalinity on operational efficiency
mg·L−1 碱度投加量 ${\rm{NO}}_3^ -{\text{-N}}$ ${\rm{HCO}}_3^ -$ ${\rm{NH}}_4^ + {\text{-N}} $ TP 83.37 30.00 83.66 8.40 8.00 167.82 30.00 167.31 8.40 8.00 259.42 30.00 250.97 8.40 8.00 352.13 30.00 334.63 8.40 8.00 表 2 碳源投加量对运行效能的影响实验配水水质
Table 2. Water component of the experiment impact of different carbon source on operational efficiency
mg·L−1 碳源投加量 ${\rm{NO}}_3^ - {\text{-N}}$ ${\rm{HCO}}_3^ -$ ${\rm{NH}}_4^ + {\text{-N}}$ TP CH3COONa 5.99 30.00 250.97 8.40 8.00 5.99 11.98 30.00 250.97 8.40 8.00 11.98 23.96 30.00 250.97 8.40 8.00 23.96 -
[1] 蔡碧婧, 谢丽, 杨殿海, 等. 反硝化脱氮工艺补充碳源选择与优化研究进展[J]. 净水技术, 2007, 26(6): 37-41. doi: 10.3969/j.issn.1009-0177.2007.06.010 [2] 杜海峰. 硫自养反硝化处理模拟地下水硝酸盐研究[D]. 石家庄: 河北科技大学, 2014. [3] SAHINKAYA E, DURSUN N. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: Elimination of excess sulfate production and alkalinity requirement[J]. Chemosphere, 2012, 89(2): 144-149. doi: 10.1016/j.chemosphere.2012.05.029 [4] OH S E, YOO Y B, YOUNG J C, et al. Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions[J]. Journal of Biotechnology, 2002, 92(1): 1-8. [5] QAMBRANI N A, OH S E. Influence of reactive media composition and chemical oxygen demand as methanol on autotrophic sulfur denitrification[J]. Journal of Microbiology and Biotechnology, 2012, 22(8): 1155-1160. doi: 10.4014/jmb [6] 袁莹, 周伟丽, 王晖, 等. 不同电子供体的硫自养反硝化脱氮实验研究[J]. 环境科学, 2013, 34(5): 1835-1844. [7] BATCHELOR B, LAWRENCE A W. A kinetic model for autotrophic denitrification using elemental sulfur[J]. Water Research, 1978, 12(12): 1075-1084. doi: 10.1016/0043-1354(78)90053-2 [8] SUN Y, NEMATI M. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters[J]. Bioresource Technology, 2012, 114: 207-216. doi: 10.1016/j.biortech.2012.03.061 [9] WANG J, LU H, CHEN G H, et al. A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment[J]. Water Research, 2009, 43(9): 2363-2372. doi: 10.1016/j.watres.2009.02.037 [10] ZHANG L, ZHANG C, HU C, et al. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: Performance and bacterial community structure[J]. Applied Microbiology and Biotechnology, 2015, 99(6): 2815-2827. doi: 10.1007/s00253-014-6113-9 [11] KOENIG A, LIU L H. Microbial aspects of autotrophic denitrification of wastewaters[M]//TOMONORI M, KEISUKE H, SATOSHI T, et al. Advances in Water and Wastewater Treatment Technology. Elsevier, 2001: 217-226. [12] SAHINKAYA E, DURSUN N, KILIC A, et al. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production[J]. Water Research, 2011, 45(20): 6661-6667. doi: 10.1016/j.watres.2011.09.056 [13] 蒲娇阳. 硫铁矿自养反硝化去除地下水中硝酸盐的研究[D]. 北京: 中国地质大学(北京), 2015. [14] KIMURA K, NAKAMURA M, WATANABE Y. Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration[J]. Water Research, 2002, 36(7): 1758-1766. doi: 10.1016/S0043-1354(01)00376-1 [15] SAHINKAYA E, DURSUN N. Use of elemental sulfur and thiosulfate as electron sources for water denitrification[J]. Bioprocess and Biosystems Engineering, 2015, 38(3): 531-541. doi: 10.1007/s00449-014-1293-3 [16] XU X, CHEN C, WANG A, et al. Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater[J]. Journal of Hazardous Materials, 2017, 321(17): 371-381. [17] 李祥, 马航, 黄勇, 等. 异养与硫自养反硝化协同处理高硝氮废水特性研究[J]. 环境科学, 2016, 37(7): 2646-2651. [18] 陈川. 自养菌-异养菌协同反硝化脱硫工艺的运行与调控策略[D]. 哈尔滨: 哈尔滨工业大学, 2011. [19] 张超. 疏自荞异养混合营养反肖化去除硝酸根运行性能及分子生态学研究[D]. 杭州: 浙江工业大学, 2014. [20] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.