燃气热脱附技术修复有机污染场地研究与应用进展

李书鹏, 焦文涛, 李鸿炫, 宋少宇, 籍龙杰, 刘鹏, 詹明秀, 王进卿. 燃气热脱附技术修复有机污染场地研究与应用进展[J]. 环境工程学报, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108
引用本文: 李书鹏, 焦文涛, 李鸿炫, 宋少宇, 籍龙杰, 刘鹏, 詹明秀, 王进卿. 燃气热脱附技术修复有机污染场地研究与应用进展[J]. 环境工程学报, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108
LI Shupeng, JIAO Wentao, LI Hongxuan, SONG Shaoyu, JI Longjie, LIU Peng, ZHAN Mingxiu, WANG Jinqing. Research and application progress of gas thermal desorption technology for the remediation of organic contaminated sites[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108
Citation: LI Shupeng, JIAO Wentao, LI Hongxuan, SONG Shaoyu, JI Longjie, LIU Peng, ZHAN Mingxiu, WANG Jinqing. Research and application progress of gas thermal desorption technology for the remediation of organic contaminated sites[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108

燃气热脱附技术修复有机污染场地研究与应用进展

    作者简介: 李书鹏(1978—),男,硕士,教授级高工。研究方向:土壤及地下水修复技术。E-mail:lishupeng@bceer.com
    通讯作者: 籍龙杰(1989—),男,博士,工程师。研究方向:土壤及地下水修复技术。E-mail:jilongjie@bceer.com
  • 基金项目:
    国家重点研发计划资助项目(2018YFC1802100);政府间国际科技创新合作重点专项(2016YFE0102000)
  • 中图分类号: X53

Research and application progress of gas thermal desorption technology for the remediation of organic contaminated sites

    Corresponding author: JI Longjie, jilongjie@bceer.com
  • 摘要: 原位燃气热脱附是目前修复有机污染土壤最具潜力的技术之一。在查阅文献的基础上,结合国内外实际案例,系统梳理了有机污染土壤原位燃气热脱附修复技术的原理、适用范围、优缺点以及工艺施工流程,对国内外燃气热脱附技术的研究现状和工程应用情况进行了对比分析,并对该技术的发展趋势和应用前景进行了展望,以期为我国有机污染土壤原位热修复技术的推广和应用提供参考。
  • 加载中
  • 图 1  原位燃气热脱附技术原理示意图

    Figure 1.  Schematic diagram of in-situ gas thermal desorption technology

    图 2  有机污染土壤内物质输运过程示意图

    Figure 2.  Schematic diagram of material transport process in organic contaminated soil

    表 1  国外燃气热脱附工程应用案例

    Table 1.  Engineering application cases of gas thermal desorption at abroad

    序号国家特征污染物浓度/
    (mg·kg−1)
    平均浓度/
    (mg·kg−1)
    目标修复浓
    度/(mg·kg−1)
    修复方
    量/m3
    加热井
    数量/个
    加热温
    度/℃
    加热
    工期/d
    1美国石油烃31 9009 645<1002 2003620045
    2美国TPH、苯、萘、
    苯并(a)芘
    54.7 (苯并(a)芘)
    2 700 (总石油烃)
    <0.9 (苯)14325130
    3加拿大三氯乙酸、三氯乙烯、二氯乙酸1 7005010084
    4刚果总石油烃65 00015 0005 00019023425030
    5美国矿物油(碳氢化
    合物)
    2 0001 00030065520030
    6布鲁塞尔总石油烃、苯系物、多环芳烃16 000300 (总石油烃)
    1.2 (苯系物)
    0.8 (多环芳烃)
    2121420031
    7英国氯代溶剂和煤油1 700101 3001410042
    8意大利总石油烃3 000<100622043
    9丹麦四氯乙烯、三氯乙烯、非水相液体0.38 (非水相液体)
    15 000 (三(四)氯
    乙烯)
    <0.1288158842
    10布鲁塞尔C10~C40、苯系物18 0003007002122033
    11丹麦C10~C4022 0001 000<1002 400 (批次1)
    3 857 (批次2)
    57 (批次1)
    69 (批次2)
    69 (批次1)
    65 (批次2)
    12丹麦C10~C40、苯系物6 7502 750<1008503722057
    13意大利C10~C40、苯系物3 1701 000501 0243822090
    14布鲁塞尔C10~C4018 00012 000<30066320042
    15意大利总碳氢化合物18 000<75012 80014320084
    16布鲁塞尔总碳氢化合物13 000<3001381922042
    17丹麦总碳氢化合物13 000<1001 35063220113
      注:“—”表示未查到相关信息。
    序号国家特征污染物浓度/
    (mg·kg−1)
    平均浓度/
    (mg·kg−1)
    目标修复浓
    度/(mg·kg−1)
    修复方
    量/m3
    加热井
    数量/个
    加热温
    度/℃
    加热
    工期/d
    1美国石油烃31 9009 645<1002 2003620045
    2美国TPH、苯、萘、
    苯并(a)芘
    54.7 (苯并(a)芘)
    2 700 (总石油烃)
    <0.9 (苯)14325130
    3加拿大三氯乙酸、三氯乙烯、二氯乙酸1 7005010084
    4刚果总石油烃65 00015 0005 00019023425030
    5美国矿物油(碳氢化
    合物)
    2 0001 00030065520030
    6布鲁塞尔总石油烃、苯系物、多环芳烃16 000300 (总石油烃)
    1.2 (苯系物)
    0.8 (多环芳烃)
    2121420031
    7英国氯代溶剂和煤油1 700101 3001410042
    8意大利总石油烃3 000<100622043
    9丹麦四氯乙烯、三氯乙烯、非水相液体0.38 (非水相液体)
    15 000 (三(四)氯
    乙烯)
    <0.1288158842
    10布鲁塞尔C10~C40、苯系物18 0003007002122033
    11丹麦C10~C4022 0001 000<1002 400 (批次1)
    3 857 (批次2)
    57 (批次1)
    69 (批次2)
    69 (批次1)
    65 (批次2)
    12丹麦C10~C40、苯系物6 7502 750<1008503722057
    13意大利C10~C40、苯系物3 1701 000501 0243822090
    14布鲁塞尔C10~C4018 00012 000<30066320042
    15意大利总碳氢化合物18 000<75012 80014320084
    16布鲁塞尔总碳氢化合物13 000<3001381922042
    17丹麦总碳氢化合物13 000<1001 35063220113
      注:“—”表示未查到相关信息。
    下载: 导出CSV

    表 2  我国燃气热脱附工程应用案例

    Table 2.  Engineering application cases of gas thermal desorption in China

    序号   项目名称年份项目
    位置
    目标污染物修复后污染物修复工
    程量/m3
    修复工期/d
    名称污染物浓度/
    (mg·kg−1)
    名称修复目标/
    (mg·kg−1)
    1宁波市庆丰地段土壤修复工程2015宁波市2,6-二硝基甲苯
    邻甲苯胺
    2,4-二硝基甲苯
    1,2-二氯乙烷
    0.7~23.6
    2.5~193
    1.5~22.4
    14.6~147
    2,6-二硝基甲苯
    邻甲苯胺
    2,4-二硝基甲苯
    1,2-二氯乙烷
    11.43
    20.77
    11.43
    10.65
    6 400168
    2镇江某公司役场地污染土壤和地下水修复中试项目2016镇江市
    氯苯
    <58.3
    <1 560

    氯苯
    0.2
    6
    1 80060
    3广州油制气厂地块项目土壤及地下水修复工程2017广州市间&对-二甲苯

    苯并(a)芘
    <84.9
    <1 420
    <46.2
    间&对-二甲苯

    苯并(a)芘
    74
    50
    0.2
    24 864 (土壤)
    977.5 (地下水)
    210
    4原煤制气厂地块(除一、二期以外剩余地块第一部分)土壤及地下水修复工程施工
    二标
    2018南京市苯并(a)芘
    <1 430
    <3 870
    苯并(a)芘
    0.47
    50
    79 318400
    5首钢焦化厂污染治理项目2018北京市苯并(a)芘、苯苯并(a)芘、苯36 471未完工
    6首钢焦化厂污染治理项目2018北京市苯并(a)芘、苯苯并(a)芘、苯28 422.5未完工
    7上海市某染料化工厂旧址修复中试[47]2018上海市苯胺
    氯苯
    1,2-二氯苯
    1,4-二氯苯
    <546
    <9 920
    <12 100
    <8 340
    苯胺
    氯苯
    1,2-二氯苯
    1,4-二氯苯
    5.75
    353
    1 795
    29.4
    29460
      注:“—”表示未查到相关信息。
    序号   项目名称年份项目
    位置
    目标污染物修复后污染物修复工
    程量/m3
    修复工期/d
    名称污染物浓度/
    (mg·kg−1)
    名称修复目标/
    (mg·kg−1)
    1宁波市庆丰地段土壤修复工程2015宁波市2,6-二硝基甲苯
    邻甲苯胺
    2,4-二硝基甲苯
    1,2-二氯乙烷
    0.7~23.6
    2.5~193
    1.5~22.4
    14.6~147
    2,6-二硝基甲苯
    邻甲苯胺
    2,4-二硝基甲苯
    1,2-二氯乙烷
    11.43
    20.77
    11.43
    10.65
    6 400168
    2镇江某公司役场地污染土壤和地下水修复中试项目2016镇江市
    氯苯
    <58.3
    <1 560

    氯苯
    0.2
    6
    1 80060
    3广州油制气厂地块项目土壤及地下水修复工程2017广州市间&对-二甲苯

    苯并(a)芘
    <84.9
    <1 420
    <46.2
    间&对-二甲苯

    苯并(a)芘
    74
    50
    0.2
    24 864 (土壤)
    977.5 (地下水)
    210
    4原煤制气厂地块(除一、二期以外剩余地块第一部分)土壤及地下水修复工程施工
    二标
    2018南京市苯并(a)芘
    <1 430
    <3 870
    苯并(a)芘
    0.47
    50
    79 318400
    5首钢焦化厂污染治理项目2018北京市苯并(a)芘、苯苯并(a)芘、苯36 471未完工
    6首钢焦化厂污染治理项目2018北京市苯并(a)芘、苯苯并(a)芘、苯28 422.5未完工
    7上海市某染料化工厂旧址修复中试[47]2018上海市苯胺
    氯苯
    1,2-二氯苯
    1,4-二氯苯
    <546
    <9 920
    <12 100
    <8 340
    苯胺
    氯苯
    1,2-二氯苯
    1,4-二氯苯
    5.75
    353
    1 795
    29.4
    29460
      注:“—”表示未查到相关信息。
    下载: 导出CSV
  • [1] 缪周伟, 吕树光, 邱兆富, 等. 原位热处理技术修复重质非水相液体污染场地研究进展[J]. 环境污染与防治, 2012, 34(8): 63-68. doi: 10.3969/j.issn.1001-3865.2012.08.014
    [2] 杨勇, 黄海, 陈美平, 等. 异位热解吸技术在有机污染土壤修复中的应用和发展[J]. 环境工程技术学报, 2016, 6(6): 559-570. doi: 10.3969/j.issn.1674-991X.2016.06.081
    [3] HAN L, QIAN L B, YAN J C, et al. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater[J]. Environmental Science and Pollution Research, 2016, 23(2): 1234-1245. doi: 10.1007/s11356-015-5335-4
    [4] KINGSTON J L T, DAHLEN P R, JOHNSON P C. State-of-the-practice review of in situ thermal technologies[J]. Groundwater Monitoring & Remediation, 2010, 30(4): 64-72.
    [5] YANG W R, WANG R S, ZHOU C B, et al. Distribution and health risk assessment of organochlorine pesticides (OCPs) in industrial site soils: A case study of urban renewal in Beijing, China[J]. Journal of Environmental Sciences, 2009, 21(3): 366-372. doi: 10.1016/S1001-0742(08)62278-0
    [6] 吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8): 2015-2024.
    [7] 康绍果, 李书鹏, 范云. 污染地块原位加热处理技术研究现状与发展趋势[J]. 化工进展, 2017, 36(7): 2621-2631.
    [8] 张学良, 廖朋辉, 李群, 等. 复杂有机物污染地块原位热脱附修复技术的研究[J]. 土壤通报, 2018, 49(4): 993-1000.
    [9] 刘伟, 汪华安, 尚浩冉, 等. 有机污染场地原位电法热脱附修复技术综述[J]. 环境工程, 2018, 36(增刊): 739-743.
    [10] HEGELE P R, MUMFORD K G. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene[J]. Journal of Contaminant Hydrology, 2014, 165: 24-36. doi: 10.1016/j.jconhyd.2014.07.002
    [11] HIESTER U, MULLER M, KOSCHITZKY H, et al. In situ thermal treatment (ISTT) for source zone remediation of soil and groundwater[J]. British Medical Journal, 2013, 31: 482-484.
    [12] BASTON D P, KUEPER B H. Thermal conductive heating in fractured bedrock: Screening calculations to assess the effect of groundwater influx[J]. Advances in Water Resources, 2009, 32(2): 231-238. doi: 10.1016/j.advwatres.2008.10.019
    [13] MUNHOLLAND J L, MUMFORD K G, KUEPER B H. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating[J]. Journal of Contaminant Hydrology, 2016, 184: 14-24. doi: 10.1016/j.jconhyd.2015.10.011
    [14] ZHAO C, MUMFORD K G, KUPPER B H. Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment[J]. Journal of Contaminant Hydrology, 2014, 164: 49-58. doi: 10.1016/j.jconhyd.2014.05.008
    [15] KROUZEK J, DURDAK V, HENDRYCH J, et al. Pilot scale applications of microwave heating for soil remediation[J]. Chemical Engineering and Processing Process Intensification, 2018, 130: 53-60. doi: 10.1016/j.cep.2018.05.010
    [16] 北京市质量技术监督局. 场地土壤环境风险评价筛选值: DB 11/T 811-2011[S]. 北京, 2011.
    [17] 生态环境部, 国家市场监督管理总局. 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600-2018[S]. 北京, 2018.
    [18] 刘志阳. 一种原位燃气热脱附土壤修复装置: ZL 201820382578.1.X[P]. 2018-12-11.
    [19] 牛晓阳, 石德升, 赵颖, 等. 污染土壤燃气原位热脱附修复系统: ZL 201811448227.7.X[P]. 2018-11-30.
    [20] 张峰, 凃辉, 王琛, 等. 一种用于污染场地的集中燃烧式原位热脱附修复装置: ZL 201710879465.2.X[P]. 2018-02-13.
    [21] KINGSTON J, JOHNSON P, KUEPER B, et al. In situ thermal treatment of chlorinated solvent source zones[M]//BERNARD H K, HANS F S, CATHERINE M V, et al. Chlorinated Solvent Source Zone Remediation. New York: Springer, 2014: 509-557.
    [22] EPA. In situ thermal treatment technologies: Lessons learned[R]. Washington, D C: U.S. EPA Enginerring, 2013.
    [23] HILL S L. Engineering and design: In situ thermal remediation[R]. Washington, D C: U.S. Army Corps of Engineers, 2009.
    [24] 刘凯, 张瑞环, 王世杰. 污染地块修复原位热脱附技术的研究及应用进展[J]. 中国氯碱, 2017(12): 31-37. doi: 10.3969/j.issn.1009-1785.2017.12.013
    [25] 刘伟, 范爱武, 黄晓明. 多孔介质传热传质理论与应用[M]. 北京: 科学出版社, 2006.
    [26] 王华军, 齐承英. 土壤高温储热热湿迁移过程的初步研究[J]. 太阳能学报, 2009, 30(12): 1683-1687. doi: 10.3321/j.issn:0254-0096.2009.12.019
    [27] 高霏, 刘菲, 陈鸿汉. 三氯乙烯污染土壤和地下水污染源区的修复研究进展[J]. 地球科学进展, 2008, 23(8): 821-829. doi: 10.3321/j.issn:1001-8166.2008.08.005
    [28] POLING B E, PRAUSNITZ J M, CONNELL J P O. The Properties of Liquids and Gases[M]. New York: McGraw-Hill Inc., 1987.
    [29] HERON G, VAN ZUTPHEN M, CHRISTENSEN T H, et al. Soil heating for enhanced remediation of chlorinated solvents: A laboratory study on resistive heating and vapor extraction in a silty, low-permeable soil contaminated with trichloroethylene[J]. Environmental Science and Technology, 1998, 32(10): 1474-1481. doi: 10.1021/es970563j
    [30] HERON G, CARROLL S, NIELSEN S G. Full-scale removal of DNAPL constituents using steam-enhanced extraction and electrical resistance heating[J]. Ground Water Monitoring and Remediation, 2005, 25(4): 92-107. doi: 10.1111/gwmr.2005.25.issue-4
    [31] ABRIOLA L M, RATHFELDER K. Mass balance errors in modeling two-phase immiscible flows: Causes and remedies[J]. Advances in Water Resources, 1993, 16(4): 223-239. doi: 10.1016/0309-1708(93)90040-M
    [32] KARKARE M C, FORT T. Water movement in " unsaturated” porous media due to pore size and surface tension induced capillary pressure gradients[J]. Langmuir, 1993, 9(9): 2398-2403. doi: 10.1021/la00033a023
    [33] QUINTARD M, WHITAKER S. Convection, dispersion, and interfacial transport of contaminants: Homogeneous porous media[J]. Advances in Water Resources, 1994, 17(4): 221-239. doi: 10.1016/0309-1708(94)90002-7
    [34] BAHAR T, GOLFIER F, OLTEAN C, et al. Comparison of theory and experiment for NAPL dissolution in porous media[J]. Journal of Contaminant Hydrology, 2018, 211: 49-64. doi: 10.1016/j.jconhyd.2018.03.004
    [35] KORDKANDI S A, FOROUZESH M. Application of full factorial design for methylene blue dye removal using heat-activated persulfate oxidation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5): 2597-2604. doi: 10.1016/j.jtice.2014.06.015
    [36] NIE M H, YANG Y, ZHANG Z J, et al. Degradation of chloramphenicol by thermally activated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2014, 246: 373-382. doi: 10.1016/j.cej.2014.02.047
    [37] 徐开泰, 林匡飞, 陆强, 等. 热活化过硫酸钠降解土壤体系中的菲[J]. 环境工程, 2018, 36(1): 188-194.
    [38] 杜玉吉, 刘文杰, 王海刚, 等. 一种利用分布式能源的污染土壤原位热修复系统及方法: ZL 201810918945.X[P]. 2018-11-30.
    [39] 程功弼, 梁广秋, 徐金旺. 一种异位燃气加热抽提一体式热脱附装置: ZL201711462559.6.X[P]. 2018-05-01.
    [40] HERON G, LACHANCE J, BAKER R. Removal of PCE DNAPL from tight clays using in situ thermal desorption[J]. Ground Water Monitoring & Remediation, 2013, 33(4): 31-43.
    [41] HERON G, PARKER K, FOURNIER S, et al. World’s largest in situ thermal desorption project: Challenges and solutions[J]. Ground Water Monitoring & Remediation, 2015, 35(3): 89-100.
    [42] HERON G, PARKER K, GALLIGAN J, et al. Thermal treatment of eight CVOC source areas to near nondetect concentrations[J]. Ground Water Monitoring & Remediation, 2009, 29(3): 56-65.
    [43] 梅志华, 刘志阳, 王从利, 等. 燃气热脱附技术在某有机污染场地的中试应用[J]. 资源节约与环保, 2015(1): 34-35. doi: 10.3969/j.issn.1673-2251.2015.01.035
    [44] 徐建, 林玉锁, 李群, 等. GTR技术对土壤加热效果及对污染物的去除效果[C]// 中国环境科学学会. 2016中国环境科学学会学术年会论文集. 海口, 2016: 3672-3681.
    [45] 张学良, 李群, 周艳, 等. 某退役溶剂厂有机物污染场地燃气热脱附原位修复效果试验[J]. 环境科学学报, 2018, 38(7): 2868-2875.
    [46] BELGIU M. Haemers technology references[EB/OL].[2019-01-01]. https://haemers-technologies.com/references/, 2019.
    [47] 王锦淮. 原位热脱附技术在某有机污染场地修复中试应用[J]. 化学世界, 2018, 59(3): 182-186.
    [48] UDELL K. Heat and mass transfer in clean-up of underground toxic wastes[J]. Annual Reviews of Heat Transfer, 1996, 7: 333-405. doi: 10.1615/AnnualRevHeatTransfer.v7
    [49] 籍龙杰, 刘鹏, 韦云霄, 等. 单根加热管原位加热土壤过程中温度变化规律[J]. 环境工程, 2019, 37(2): 165-169. doi: 10.12126/see.2019.02.011
  • 加载中
图( 2) 表( 2)
计量
  • 文章访问数:  6650
  • HTML全文浏览数:  6650
  • PDF下载数:  265
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-21
  • 录用日期:  2019-07-12
  • 刊出日期:  2019-08-01
李书鹏, 焦文涛, 李鸿炫, 宋少宇, 籍龙杰, 刘鹏, 詹明秀, 王进卿. 燃气热脱附技术修复有机污染场地研究与应用进展[J]. 环境工程学报, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108
引用本文: 李书鹏, 焦文涛, 李鸿炫, 宋少宇, 籍龙杰, 刘鹏, 詹明秀, 王进卿. 燃气热脱附技术修复有机污染场地研究与应用进展[J]. 环境工程学报, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108
LI Shupeng, JIAO Wentao, LI Hongxuan, SONG Shaoyu, JI Longjie, LIU Peng, ZHAN Mingxiu, WANG Jinqing. Research and application progress of gas thermal desorption technology for the remediation of organic contaminated sites[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108
Citation: LI Shupeng, JIAO Wentao, LI Hongxuan, SONG Shaoyu, JI Longjie, LIU Peng, ZHAN Mingxiu, WANG Jinqing. Research and application progress of gas thermal desorption technology for the remediation of organic contaminated sites[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108

燃气热脱附技术修复有机污染场地研究与应用进展

    通讯作者: 籍龙杰(1989—),男,博士,工程师。研究方向:土壤及地下水修复技术。E-mail:jilongjie@bceer.com
    作者简介: 李书鹏(1978—),男,硕士,教授级高工。研究方向:土壤及地下水修复技术。E-mail:lishupeng@bceer.com
  • 1. 北京建工环境修复股份有限公司,北京 100015
  • 2. 污染场地安全修复技术国家工程实验室,北京 100015
  • 3. 中国科学院生态环境研究中心,城市与区域国家重点实验室,北京 100085
  • 4. 中国计量大学计量测试工程学院,杭州 310018
基金项目:
国家重点研发计划资助项目(2018YFC1802100);政府间国际科技创新合作重点专项(2016YFE0102000)

摘要: 原位燃气热脱附是目前修复有机污染土壤最具潜力的技术之一。在查阅文献的基础上,结合国内外实际案例,系统梳理了有机污染土壤原位燃气热脱附修复技术的原理、适用范围、优缺点以及工艺施工流程,对国内外燃气热脱附技术的研究现状和工程应用情况进行了对比分析,并对该技术的发展趋势和应用前景进行了展望,以期为我国有机污染土壤原位热修复技术的推广和应用提供参考。

English Abstract

  • 近年来,随着我国“退二进三”和“退城进园”政策的进一步落实,大批化工企业被迫搬迁、改造或关闭停产,导致大量有机污染场地被遗留在城市及其周边地区[1-2]。这些污染场地将对人体健康和生态环境造成严重危害,从而制约城市的建设与发展[3-6]

    原位热脱附技术自20世纪70年代开始应用于有机污染场地的修复,其基本原理是通过加热提高污染区域的温度,改变污染物的物化性质,增加气相或者液相中污染物的浓度,从而提高液相抽出或土壤气相抽提对污染物的去除率。根据加热方式不同,原位热脱附技术可分为蒸汽强化提取技术、电阻加热技术和热传导技术等[7-9]。其中,热传导技术因热源不同又可分为电加热和燃气热脱附[10-11]。原位热脱附技术的优点在于无须挖掘和运输污染土壤,二次污染相对可控,对低渗透污染区、非均质污染区域具有较强的适用性和较好的修复效果。但原位热脱附技术的修复周期和修复效果具有一定的不确定性,主要取决于以下几个因素[12-15]:1)场地污染物类型和浓度、污染面积或深度等;2)土壤中有机质的含量(土壤有机质会使污染物吸附在土壤上,从而限制其蒸发);3)场地水文地质条件(如土壤含水率、渗透性、导热性等);4)修复标准的选定(某些地方标准会比国家标准的要求更为严格,如北京市规定氯苯在居住用地的筛选值为41 mg·kg−1[16],而国家在第一类建设用地规定的筛选值为68 mg·kg−1[17])。

    燃气热脱附(gas thermal desorption, GTD)是利用燃气燃烧为热源,通过热传导方式使得土壤温度升高,再将有机污染物解吸处理,以进一步处理废水和废气。其技术优势在于燃气便于运输、输送方便;相比电加热方式,对于场地基础条件要求较低、启动快速、运行灵活[18-20]。欧美等发达国家针对GTD技术已有初步研究和应用,而国内仍处于起步阶段。因此,有必要对国内外有关GTD技术的研究现状和工程案例进行总结和分析,以期为我国污染土壤原位修复领域的科研及工程应用提供参考,推动我国GTD技术的工程化应用进程。

  • GTD技术的原理如图1所示。在燃烧器中,通入天然气或液化石油气,同时通过抽风机产生的负压将清洁空气吸入,在燃烧器内混合,点火燃烧,产生高温气体。高温气体注入加热井中,通过热传导方式加热目标修复区域,使得土壤温度升高至修复目标温度。在加热过程中,污染物从土壤中解吸出来或者发生裂解反应,此时借助气相抽提(soil vapor extraction,SVE)将含有污染物的蒸汽提取至地表,然后进入后续的尾气治理系统,达到污染物去除的目的,最终实现达标排放[21]

  • 根据上述工艺原理,整套GTD工艺主要包括4个部分:燃料供应系统、加热和抽提系统、辅助配套系统(包括地面保温系统、监测系统、数据传输系统、控制系统等)、尾水尾气处理系统。

    1)燃料系统。GTD技术采用管道输送燃气,燃气管道上安装有调压阀,确保进入燃烧器的燃气压力满足设备要求。

    2)加热系统。加热系统的设计关键是加热井点布置,须综合考虑污染物的浓度、工期要求及现场的平面布置等因素。

    3)抽提系统。整个原位修复区域外设有防渗阻隔墙,确保区域外的地下水不会流入[12]。抽提系统一般设计为竖向SVE井和水平SVE管,通过在土壤中形成负压来抽提加热产生的污染气体。抽提管的长度与加热管一致,同时确保抽提范围能覆盖到整个修复区域。

    4)地面保温系统。井管系统安装完毕后,一般在表面覆盖一层25 mm厚的隔热材料和25 mm厚的混凝土用作隔热层,然后再安装燃烧器和地面管道等。设置混凝土隔热层一方面可减少热量散失,并确保现场操作的安全;另一方面还可防止污染物扩散,避免运行时造成二次污染。

    5)温度监测和传输系统。该系统在整个加热过程中,对单个燃烧器的燃烧状况、压力以及土壤中关键位置的温度、压力等参数进行实时监测和数据传输,从而实现对整个过程的实时监控。修复区域中的单个燃烧器可以单独控制,也可以组合控制,以达到温度梯度和能量消耗最优化。

    6)尾水尾气处理系统。在加热过程中,土壤中的污染物从土壤中解吸出来,形成含污染物的蒸汽。含污染物的蒸汽被抽提井抽取至地表,然后进入后续的尾水及尾气系统处理。尾水统一收集输送至现场污水处理站进行处理;尾气统一收集输送至现场尾气处理站,经过一级气水分离、冷凝、二级气水分离后,少量不凝气体进入到蓄热式氧化炉或燃烧室中完成彻底处理,最终达标排放。

  • GTD工艺施工流程主要包括:测量放线,施工现场准备及场地平整,场地封闭阻隔及降水,加热和抽提井建设,设备连接和整装调试,加热修复和尾气治理;修复治理验收完成后,进行管道和燃烧器等的拆除,最终完成修复施工[22-23]。施工过程特别注意以下4点。

    1)加热井的间隔距离会直接影响污染物的去除效果,因此,加热井的间隔距离应合理经济。根据已有工程经验,一般设置为1.5~4 m[8]。确定加热井的间隔距离后,可根据污染区域的面积及范围进行加热井的布置。为抵消围绕目标处理区周边的边缘效应,加热井通常要沿着划定的目标处理区的极限横向延伸一定距离。

    2)为保证燃气热脱附的效果和降低热损失,在GTD原位修复区周边设置闭合的防渗墙,以防止外界地下水进入GTD修复区;同时,为减少来自处理区顶部的热量损失,需要以表面覆盖物的形式进行保温,如轻质混凝土等。

    3)地面硬化阻隔完成后,进行设备及管线连接(主要包括加热井上部燃烧器连接、天然气管线连接、抽提井管线与设备连接等)时,宜做到设备管线的连接布局尽量合理整齐,避免相互交叉。

    4)尾水尾气处理系统须定期检查尾气处理设备的运行,防止管道漏气,以保障处理设备末端排气口的气体质量达标。同时,尾水应及时收集、妥善输送、及时处置,以保证出水达标。

  • 原位GTD技术主要优势包括3个方面。

    1) GTD最高加热温度可达到500 ℃,可原位达标去除几乎所有有机污染物和部分挥发性的无机污染物。因整个污染区域处于高温负压环境,故会增加有机物的流动性并降低其汽化所需的蒸发温度,使其迅速从土壤中解吸并进入蒸汽。综合上述2点,该技术综合性价比很高[24]

    2) GTD技术不受复杂地质及水文地质条件等因素限制,对低渗透性污染场地修复具有很强的适宜性。同时,GTD的加热深度大,最大加热深度目前可达18 m,并可根据实际工程需要再加大 深度。

    3) GTD技术使用天然气和石油气等一次能源,单位加热长度内输入功率比电加热过程更高,可加速土壤升温效果,缩短修复工期。同时,该技术系统安装便捷,设备重复利用率高。另外,当修复现场电力供给紧张时,燃气运输的便利性更能保证修复项目的顺利实施。

  • 相比其他原位热修复技术,GTD技术的主要缺陷包括3个方面。

    1)加热系统出口的排烟温度一般为200~400 ℃,燃气加热能源利用率仅为30%~60%,其热量损失达40%~70%,因而造成大量的能量浪费。此外,在燃气加热土壤的过程中,能量损耗更高。

    2)电加热可以轻易控制不同深度的电能输出,实现定深加热,能量损失可以达到补偿,加热也就更均匀;而用燃气加热时,其底部加热温度最高,由于在浅层能量输入很低,达到目标温度会比较困难,故会产生受热不均匀的现象。

    3)电加热技术的安全保护措施(如漏电保护等)及安全操作规程非常完备,而燃气加热需要管道供应燃气,现场管道及管线设计尤为关键,会受施工现场的封闭性条件限制,存在较大的安全隐患。

  • 在原位热脱附技术中,热量可通过热辐射、热传导和热对流等方式在土壤和地下水中进行传递,使水和有机污染物受热蒸发,并通过抽提工艺进行捕集。究其本质,可将土壤视为多孔介质,而原位热脱附过程可看成是多孔介质内多组分多相流传热传质过程[25]。然而,由于土壤特性及污染物类型复杂多变,目前对其内在热质传递过程的认识尚不充分。

    影响原位热脱附中热质传递过程的因素很多。从传热过程来看,其传热效率主要取决于污染区域内的温度梯度、土壤及地下水介质的热导率和保温隔热性能[26]。其中,热传导主要发生于固体之间,适合于低渗透率场地;热对流则依赖于流体间的相对运动,适合于高渗透率场地;而热辐射主要存在于热源与周边土壤之间的热交换,距离热源较远处则因温差较小基本可以忽略[26]。由此可见,土壤内的传热过程也受诸多因素影响。而相对于传热,传质过程则更为复杂,各相间的物质输运相互牵连。图2为有机污染土壤内典型的传质过程示意图。在典型有机污染场地中,大多数有机污染物在水相中的溶解性较差,其主要吸附于土壤颗粒表面或以独立自由相存在;而某些难溶性有机污染物往往又具有较强的迁移性(如三氯乙烯、二氯甲烷和石油烃等),可以穿过低渗透性土层至深层地下环境[27]。并且,热脱附过程中土壤温度随时间不断变化,因此,有机污染物在地下水中的溶解度、在土壤表面的吸附性以及地下水和污染物的物性均会发生动态变化。POLING等[28]发现,当温度由25 ℃升至140 ℃时,萘在水中溶解度增加45倍。HERON等[29]发现,当温度由23 ℃升至99 ℃后,三氯乙烯亨利常数增加了8倍;同时,他们还发现,当有机物和地下水处于混合状态时,混合物沸点往往会低于100 ℃[30]

    对于土壤污染物迁移机理的研究,已有研究者[31-32]从污染物迁移角度出发建立了关于非水相液体在地下运移的多相流模型。这些模型分为3类。第1类是解析和半解析模型。该类模型将污染物的不混溶流动当作活塞流处理,将多相流概化为单相流动,不考虑各相之间的相互影响,也未引入毛细压力和饱和度之间的函数关系。第2类模型假设多相流体是同时流动的,有机物是不混溶流动的,并考虑了各相间毛细压力随饱和度的变化。第3类模型考虑各相各组分间的传输和分配。此外,QUINTARD等[33]在多孔介质的宏观尺度下提出了基于体积平均方法的两相非平衡理论模型。而BAHAR等[34]在此基础上发展了基于多孔介质微观尺度的污染物迁移模型,能够获得更真实的结果。这些模型理论上支持污染物迁移的预测,但由于各自假定条件不同,导致模型使用受限。尤其在考虑温度影响时,污染物受热蒸发,其输运方式将会发生很大变化。由于原位热脱附过程中的传热传质是一个多物理场动态耦合问题,目前尚未有合适的模型能涵盖所有问题,因此,有必要对其理论模型开展更为深入的研究。

    此外,现有原位热脱附技术在应用时存在一个很大问题—成本较高,因此,如何提高修复效率、降低能耗成为推动该技术发展的关键因素。为提高修复效率,部分研究者采用热活化耦合化学氧化的工艺进行联合修复。KORDKANDI等[35]利用热活化过硫酸盐氧化亚甲基蓝以达到99.5%的降解率;NIE等[36]利用热活化过硫酸盐氧化氯霉素以达到96.3%的降解率。以上研究均在水溶液中进行。而徐开泰等[37]发现,热活化Na2S2O8降解土壤中菲(PHE)的过程符合准一级动力学,且受水浴、反应温度、Na2S2O8浓度、菲初始浓度、水土比和共存离子等因素的影响。一般而言,温度越高,PHE降解率越高;313 K时,PHE基本无降解;333 K时,PHE开始缓慢降解;363 K时,10 min内PHE的降解率可达65%。

    杜玉吉等[38]发明了一种利用分布式能源的污染土壤原位热修复系统和方法,通过使用燃气内燃机所产生的高温烟气和电力对污染土壤进行原位加热修复。其中,高温烟气和电阻加热的结合使用可同时进行烟气热修复和电阻热修复,形成多能互补机制,具有双重保障。但该系统须同时配备发电系统等附属设备,从而使系统变得非常复杂。此外,程功弼等[39]发明了一种异位燃气加热抽提一体式热脱附装置,包括燃气加热装置、多个加热抽提一体化井、尾气处理装置、电控装置,多个加热抽提一体化井水平平行排列。多个加热抽提一体化井修复土壤区域的外周设有多个隔热板,隔热板上设有用于感应土壤温度的温度传感器。此工艺的热脱附效率高、可灵活应用,便于土壤污染处理的工程操作和使用。

    除上述理论研究外,不少学者针对原位热修复技术进行了不同规模的中试实验,为该技术的实际应用奠定了基础。HERON等[40-42]先后利用热传导式原位热脱附技术对有机污染场地进行了中试实验研究,并对修复周期和1 m3的综合修复成本进行了详细分析。梅志华等[43]在面积为100 m2、深度为18 m的某退役溶剂厂污染区域开展了GTD中试研究,结果表明:土壤中苯、氯苯和石油类污染物最高去除率分别为99.8%、99.7%和98.2%;地下水中苯、氯苯和石油类污染物最高去除率分别为98.8%、97.7%和100%。GTD修复技术主要受管壁温度和停留时间的影响,温度越高,停留时间越长,污染物去除效果越好。另外,在相同的加热温度和停留时间条件下,含水率较小和孔隙率较大的土壤中污染物去除效果较好[43-45]。然而,上述研究并未对加热井和抽提井的间距、排布方式以及热脱附周期等影响因素进行详细讨论,往往只凭工程师的经验进行实际操作。此外,我国污染场地具有污染成因复杂、污染种类繁多、污染程度严重和修复规模大等特点,这也对原位热脱附技术的实施提出了更高的要求。由此可知,我国GTD修复技术的研究还处于初步阶段,有必要系统地分析影响原位热脱附过程中热质传递的各种因素,深入研究其热质传递规律,通过数值方法实现对热脱附过程的有效预测来优化布置以降低修复成本,从而推动该技术的发展和应用,为工程实际方案设计提供理论基础和技术参考。

  • GTD是一种相对高效、成熟的污染土壤修复技术,在全球已有很多成功应用案例,但多靠经验操作。许多国家自20世纪80年代即开始将原位热处理修复技术应用于污染地块的修复中,已在上百项污染地块修复工程中使用了原位热处理技术。KINGSTON等[4]统计了1982—2007年的182个原位修复项目,其中以热传导加热形成的项目数量占14.3%。在我国,原位热处理修复技术应用起步较晚,但也积累了几个工程案例。下面对国内外有关燃气热脱附修复污染土壤典型案例进行汇总和分析。

    调研发现,在国外,使用GTD技术的公司主要包括:美国Georemco环境修复公司、德国旭普林环境工程有限公司、比利时哈默斯以及法国威立雅等。表1总结了国外若干燃气热脱附修复实例[46]

    GTD技术具有修复期间对场地周边居民生活影响小、污染物处理范围宽、设备可移动、处理速率快、修复后土壤可再利用等优点。因此,GTD技术在国内的应用案例也在逐渐增多,如广州油制气厂地块土壤修复、宁波江东甬江东南岸区域JD01-01-10地块、首钢园区焦化厂(绿轴)地块污染治理等修复项目。目前国内GTD技术仍处于引进消化吸收和自主研发阶段,少数企业依靠引进国外先进技术初步掌握了核心技术,如江苏大地益源环境修复有限公司、森特士兴集团股份有限公司等,他们相应地占据了一定的市场份额。目前,GTD技术仍然属于“黑箱操作”,加热温度的确定和修复终点的确定基本靠经验,加热的精准性及污染物去除的精准性难以控制,造成修复不足或过度修复。表2总结了国内公司采用GTD修复技术的实例。

    表1表2可知,适用场景、加热温度、修复深度、加热周期和降低能耗是在污染场地实际修复中必须要考虑的关键问题[46]

  • 在国外,GTD技术更多地应用在污染浓度较高的污染源区域,处理的污染物主要包括总石油烃、苯系物和氯代烃。该类项目具备4个特点:污染土方量较小(单批次<3 000 m3),修复面积较小(<300 m2),污染浓度较高(最高150 000 mg·kg−1,平均浓度约15 000 mg·kg−1),修复目标低(<300 mg·kg−1)。实施形式多数采用原位修复的方式,个别案例如案例4(见表1)采用异位建堆的形式实施加热过程,分6个批次完成了12 000 t石油烃污染土壤的修复工作。

    在我国,实际修复工程大多以工业污染场地为主,如焦化厂、农药厂和化工厂等。处理的污染物以苯系物、多环芳烃和石油烃等为主。同时,国内修复项目处置土方量和修复面积一般都很大,导致修复工期较长,因此,对GTD装置的工业化程度要求也更高。另外,修复过程的能耗取决于土壤含水量、孔隙度、受污染情况以及目标加热温度等。UDELL[48]认为,至少有10%~30%的水分会被加热至沸腾;HERON等[40-42]进一步计算得出,修复的耗能大体是200~400 kWh·m−3,并在一块污染面积达1.3×104 m2的原位热脱附修复项目中,计算得出平均能耗为249 kWh·m−3。因此,针对国内大型原位修复场地,降低系统能耗,保证装置的运行稳定性,以及研发配套的安全、高效、集成化的尾水尾气处理系统,是国内原位修复项目中迫切需要解决的实际问题。

  • 对比国外工程案例可发现,目标污染物基本涵盖了所有典型有机污染物,且目标加热温度均在220 ℃以下。这可能是由于共沸现象的存在(共沸是指2个组分或多组分的液体混合物以特定比例组成时,在恒定压力下沸腾,其蒸气组成比例与溶液相同的现象)。一般混合物的沸腾温度会低于他们各自的沸点,使得目标加热温度无须超过污染物的沸点[14]。因此,我国在开展GTD实施的过程中,应充分考虑共沸现象,尽量避免设置过高的目标加热温度。

    案例中介绍目标加热温度为冷点监测处的温度,达到此温度时,需要恒温一段时间。个别案例无法达到设定温度的原因是由于地下水的持续补充,导致大部分热量损失,无法将修复区域加热到该目标温度。

  • 原位热脱附只能是由下层到上层的持续加热,所以对修复深度存在一定的要求。对比国外的17个案例发现,最深的修复深度在14 m左右,而国内目前修复最深的深度为18 m。这可能是因为GTD只能自底部开始加热,烟气由下往上温度逐渐降低,当深度达到一定值时,燃气加热过程会导致修复区域温度场分布变化较大。在原位热修复过程中,如果土壤中温度场分布不均匀将会导致如下后果: 1) 重质非水相液体重新冷凝,造成不可控的二次污染过程;2) 污染物在抽提井中发生冷却,堵塞抽提井;3) 监测井发生塌陷,造成修复场地沉降[49]。因此,应尽量降低不同深度土壤之间的温度差异。

  • 虽然加热周期取决于污染物性质及污染浓度、修复方量、加热井点数量等因素,但从国外案例来看,一般加热周期都只在30~40 d。如果仅从国外17个案例分析来看,GTD技术修复周期短的优势是成立的,即针对点源污染,可在较短时间内完成修复过程;但大型污染场地若采用GTD技术,再加上分批次处理,修复工期则存在较大的不确定性。

  • 由于GTD过程存在大量的能量损失,因此,需要采取一定的节能手段。对比国内外的工程案例,总结了3种降低能耗的方式。

    1)分批次处理。从一个批次加热井(运行中)出来的尾气进到另一批次的加热井(未开始运行)中,提前预热另一个批次的污染土壤。如表1中的案例11,分成2个批次分别完成了2 400 m3和3 857 m3石油烃污染土壤修复,从而达到修复目标值(<100 mg·kg−1)。

    2)耦合原位化学氧化技术。如表1中的案例8,先将污染区域进行GTD,将污染物降低到较低浓度(此时未达到修复目标值),然后停止加热,将加热管拔出。再利用原位化学氧化技术,向加热井内注入氧化药剂,氧化药剂利用余热的催化作用,发挥最大的活性,实现污染物的彻底氧化降解。此种利用耦合多种修复技术的方式,可以有效降低单种修复技术的能耗,同时,防范GTD修复后期出现的“拖尾”现象。

    3)设置伴热抽提管道。如表2中的案例6,在加热管外装一个小型抽提管道,将抽提气回注到加热管内燃烧区域,完成彻底燃烧。可利用有机污染物燃烧放热,节省一部分能量;亦可实现污染物的协同处理,降低尾气处理负荷。设置伴热抽提管道的方式在国外早期的案例中并未出现,而在最近几年的修复案例中,均设置伴热抽提管道,实现污染物的“再燃”。

  • 经过30年的发展,国际上许多国家在热脱附修复有机污染场地方面形成了完整的成套技术和装备,广泛应用于高浓度有机污染土壤的异位或原位修复。我国在这方面尚处于起步阶段,存在的主要问题包括2个方面:1)基础理论与国外存在差距,如有机污染物在不同升温阶段的迁移转化规律,土壤水分含量、质地等理化性质对热修复的影响机制尚不清晰。2)核心技术靠进口、国产化程度低。国外设备引进费用较高,需要研发我国具有独立自主知识产权的热脱附技术装备。未来,研发具有热回用单元的能量高效利用、智能化、污染物排放可控的原位热脱附成套技术与装备,提升我国原位热脱附成套技术与装备的修复能力与能效水平将成为主流趋势。

    目前,由于国内在原位热脱附技术、设备及工程实施等方面缺乏经验,为了更好更高效地应用于有机污染场地的修复过程,可重点从以下3个方面开展深入研究。

    1)原位热脱附技术能量高效利用和节能减排技术的研发。开展原位热脱附过程的关键影响参数研究,如热脱附温度、处理时间、土壤质地、热导率及热扩散率、土壤含水率以及加热井间距等对污染物脱除效率影响规律,优化工程设计,精准化施工避免能量浪费;开展修复区域表层阻隔材料和竖向止水帷幕材料保温性能的研发,减少热量向周围扩散,提升能量利用效率;探索有机污染物的再利用方法,如抽提出的有机污染蒸汽可考虑送入燃气热传导加热系统的燃烧器中作为能源使用;利用可再生能源产热、高效燃烧器及电热设备、高温烟气循环换热、高温抽提混合液换热、地下水力阻隔与隔热实施等手段提高热利用及转换效率,节能降耗;开展污染物的去除机理以及迁移转化机制方面的研究,通过模型模拟以及数值模拟等方法得出修复过程中污染物浓度与加热时间、能量消耗等的定量数学关系,构建解吸动力学模型,严控修复施工节点。

    2)原位热脱附全过程热传导数值模拟及应用软件的开发。开展原位热脱附修复污染土壤全过程热传导数值模拟,掌握热量在非均质土壤中的热传导规律;探明水分在不断析出过程中土壤动态热物性变化规律,特别是土壤导热系数的变化特性;建立包括土壤、水蒸气、目标污染物等物质在内的能量平衡和物质平衡模型;借助小型和中试实验对模拟结果进行对比修正,掌握土工参数和加热温度等参数对热量在土壤中传导速率的影响作用机理;给出多种典型目标污染物在不同修复周期以及不同地质条件下的热传导速率,并基于修正后的全过程热传导数值模拟进行软件开发,最终获得输入目标污染物沸点和溶解度、修复周期、加热温度、土工参数等现场条件即可得到加热井间距、加热井温度及升温速率等推荐值的工程化应用软件。

    3)多种修复技术耦合工艺、应用设备的研发和二次污染的防控。一是组合工艺研发。探索原位热脱附技术与其他修复技术在实际应用中的联合应用,如利用热脱附后的余热促进微生物对有机污染物降解活动;利用热脱附过程增加地下水有机质含量,为微生物修复活动提供碳源,充分发挥微生物的活性,使微生物的修复效果达到最佳;利用余热激活过硫酸盐等氧化剂的方式促进原位化学氧化修复过程等。二是应用设备研发。我国原位热脱附修复技术研究和工程应用起步较晚,大多停留在设计研发阶段,距离设备商业化应用还具有较大差距。急需结合我国污染地块实际情况,发展快速高效、成本低廉、实施便捷以及环境友好的本土化原位热处理修复技术及配套修复设备。三是二次污染防控。加强原位热脱附过程抽提出的地下污染物的处理与处置,严格控制二次污染,加强高浓度抽提气体的高效冷凝回收等;建立原位热脱附全修复效果和环境全过程的检测方法。同时,开展原位热脱附过程中修复场地内的大气和废水有组织和无组织排放检测,严格控制二次污染物排放。

参考文献 (49)

返回顶部

目录

/

返回文章
返回