无机砷在淡水底栖动物摇蚊幼虫中的吸收和累积

王晓辉, 杨常亮, 郑王媛淇, 王洁, 张璟, 黄中情. 无机砷在淡水底栖动物摇蚊幼虫中的吸收和累积[J]. 生态毒理学报, 2020, 15(5): 288-300. doi: 10.7524/AJE.1673-5897.20191027002
引用本文: 王晓辉, 杨常亮, 郑王媛淇, 王洁, 张璟, 黄中情. 无机砷在淡水底栖动物摇蚊幼虫中的吸收和累积[J]. 生态毒理学报, 2020, 15(5): 288-300. doi: 10.7524/AJE.1673-5897.20191027002
Wang Xiaohui, Yang Changliang, Zheng Wangyuanqi, Wang Jie, Zhang Jing, Huang Zhongqing. Bioaccumulation of Inorganic Arsenic in the Freshwater Zoobenthos Chironomid Larvae[J]. Asian journal of ecotoxicology, 2020, 15(5): 288-300. doi: 10.7524/AJE.1673-5897.20191027002
Citation: Wang Xiaohui, Yang Changliang, Zheng Wangyuanqi, Wang Jie, Zhang Jing, Huang Zhongqing. Bioaccumulation of Inorganic Arsenic in the Freshwater Zoobenthos Chironomid Larvae[J]. Asian journal of ecotoxicology, 2020, 15(5): 288-300. doi: 10.7524/AJE.1673-5897.20191027002

无机砷在淡水底栖动物摇蚊幼虫中的吸收和累积

    作者简介: 王晓辉(1994-),男,硕士研究生,研究方向为污染物迁移转化,E-mail:wxh19931114@163.com
    通讯作者: 杨常亮, E-mail: yangcl227@163.com
  • 基金项目:

    国家自然科学基金资助项目(51168047)

  • 中图分类号: X171.5

Bioaccumulation of Inorganic Arsenic in the Freshwater Zoobenthos Chironomid Larvae

    Corresponding author: Yang Changliang, yangcl227@163.com
  • Fund Project:
  • 摘要: 砷(As)是一种典型的毒害性类金属元素,在水环境中以多种化学形态存在,这影响了As的生物利用度和生理毒性效应。以摇蚊幼虫(chironomid larvae)为对象,探讨其暴露于亚砷酸盐(arsenite,As(Ⅲ))和砷酸盐(arsenate,As(Ⅴ))水溶液中的生物累积规律。结果表明,摇蚊幼虫中As的累积与暴露时间有关,且对As(Ⅲ)的累积较As(Ⅴ)明显。摇蚊幼虫对无机As的生物利用度较低,50 μg·L-1 As(Ⅲ)暴露组和100 μg·L-1 As(Ⅲ)暴露组中摇蚊幼虫对无机As的累积量与对照组相比均没有显著性差异;50 μg·L-1和100 μg·L-1 As(Ⅴ)暴露组中摇蚊幼虫体内总As浓度与对照组相比也没有显著增加。在高浓度的无机As暴露条件下,摇蚊幼虫对As(Ⅲ)的生物利用度高于As(Ⅴ)。暴露于As(Ⅲ)和As(Ⅴ)不同时间后,摇蚊幼虫中总As浓度随无机As暴露浓度升高而逐渐增加,但生物累积能力随无机As暴露浓度的升高反而降低。
  • 加载中
  • Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5):517-568
    Mandal B K, Suzuki K T. Arsenic round the world:A review[J]. Talanta, 2002, 58(1):201-235
    Nguyen V A, Bang S, Viet P H, et al. Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam Province, Vietnam[J]. Environment International, 2009, 35(3):466-472
    Migon C, Mori C, Tian R, et al. Arsenic and antimony contamination in a riverine environment affected by an abandoned realgar mine[J]. Toxicological & Environmental Chemistry Reviews, 1995, 52(1-4):221-230
    Mori C, Orsini A, Migon C. Impact of arsenic and antimony contamination on benthic invertebrates in a minor Corsican river[J]. Hydrobiologia, 1999, 392(1):73-80
    Migon C, Mori C. Arsenic and antimony release from sediments in a Mediterranean estuary[J]. Hydrobiologia, 1999, 392(1):81-88
    Culioli J L, Calendini S, Mori C, et al. Arsenic accumulation in a freshwater fish living in a contaminated river of Corsica, France[J]. Ecotoxicology & Environmental Safety, 2009, 72(5):1440-1445
    Foley R E, Spotila J R, Giesy J P, et al. Arsenic concentrations in water and fish from Chautauqua Lake, New York[J]. Environmental Biology of Fishes, 1978, 3(4):361-367
    Jin X L, Ren J, Xia F. The research progress on the arsenic pollution of the rivers and lakes in China[J]. Environmental Science Survey, 2012, 31(5):26-31
    张玉宝, 徐颖, 储昭升, 等. 洞庭湖平原中小型湖群沉积物中砷污染特征与评价[J]. 湖泊科学, 2011, 23(5):695-700

    Zhang Y B, Xu Y, Chu Z S, et al. Characteristics and evaluation of arsenic pollution in sediments of small and medium lakes in Dongting Lake Plain[J]. Journal of Lake Sciences, 2011, 23(5):695-700(in Chinese)

    Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296(5576):2143-2145
    Wang S, Cao X, Lin C, et al. Arsenic content and fractionation in the surface sediments of the Guangzhou section of the Pearl River in Southern China[J]. Journal of Hazardous Materials, 2010, 183(1):264-270
    李世玉, 刘彬, 杨常亮, 等. 上覆水pH值和总磷浓度对含铁盐的高砷沉积物中砷迁移转化的影响[J]. 湖泊科学, 2015, 27(6):1101-1106

    Li S Y, Liu B, Yang C L, et al. Effect of pH and total phosphorus concentration of overlying water on arsenic mobilization in the sediments containing high arsenic and iron salts[J]. Journal of Lake Sciences, 2015, 27(6):1101-1106(in Chinese)

    Yamaoka Y, Takimura O, Fuse H, et al. Effect of glutathione on arsenic accumulation by Dunaliella salina[J]. Applied Organometallic Chemistry, 1999, 13(2):89-94
    Oscarson D W, Huang P M, Liaw W K. The oxidation of arsenite by aquatic sediments[J]. Journal of Environmental Quality, 1980, 9(4):700-703
    Penrose W R, Woolson E A. Arsenic in the marine and aquatic environments:Analysis, occurrence, and significance[J]. C R C Critical Reviews in Environmental Control, 1974, 4(1-4):465-482
    Bissen M, Frimmel F H. Arsenic-A Review. Part I:Occurrence, toxicity, speciation, mobility[J]. Acta Hydrochimica Et Hydrobiologica, 2003, 31(1):9-18
    Sharma V K, Sohn M. Aquatic arsenic:Toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35(4):743-759
    Jomova K, Jenisova Z, Feszterova M, et al. Arsenic:Toxicity, oxidative stress and human disease[J]. Journal of Applied Toxicology, 2011, 31(2):95-107
    Sabbioni E, Fischbach M, Pozzi G, et al. Cellular retention, toxicity and carcinogenic potential of seafood arsenic. I. Lack of cytotoxicity and transforming activity of arsenobetaine in the BALB/3T3 cell line[J]. Carcinogenesis, 1991, 12(7):1287-1291
    Hasegawa H, Sohrin Y, Seki K, et al. Biosynthesis and release of methylarsenic compounds during the growth of freshwater algae[J]. Chemosphere, 2001, 43(3):265-272
    Suhendrayatna, Ohki A, Maeda S. Biotransformation of arsenite in freshwater food-chain models[J]. Applied Organometallic Chemistry, 2001, 15(4):277-284
    Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for arsenic. TP-92/02[R]. Atlanta:Agency for Toxic Substances and Disease Registry, U S Department of Health & Human Services:2000
    Zhang W, Guo Z, Zhou Y, et al. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish[J]. Aquatic Toxicology, 2016, 179:65-71
    Tariq J, Jaffar M, Ashraf M. Levels of selected heavy metals in commercial fish from five freshwater lakes, Pakistan[J]. Toxicological & Environmental Chemistry Reviews, 1991, 33(1-2):133-140
    Vala A K, Davariya V, Upadhyay R V. An investigation on tolerance and accumulation of a facultative marine fungus Aspergillus flavus to pentavalent arsenic[J]. Journal of Ocean University of China, 2010, 9(1):65-67
    Ray K, Adi L, Boaz M, et al. Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations[J]. Frontiers in Microbiology, 2015, 6:154
    Langston W J. Availability of arsenic to estuarine and marine organisms:A field and laboratory evaluation[J]. Marine Biology, 1984, 80(2):143-154
    Geiszinger A E, Goessler W, Francesconi K A. The marine polychaete Arenicola marina:Its unusual arsenic compound pattern and its uptake of arsenate from seawater[J]. Marine Environmental Research, 2002, 53(1):37-50
    Zhang W, Huang L, Wang W X. Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure[J]. Journal of Hazardous Materials, 2012, 221-222(4):162-169
    Kristiina V, Matti T L, Chen X P, et al. Metal bioavailability in ecological risk assessment of freshwater ecosystems:From science to environmental management[J]. Ecotoxicology and Environmental Safety, 2017, 147:430-446
    Proulx I, Hare L, Dupré B. Is it justifiable to pool Chironomus species in trace element contamination studies?[J]. Environmental Toxicology and Chemistry, 2019, 38(1):145-159
    中华人民共和国水利部. SL.327.1-2005水质砷的测定原子荧光光度法[S]. 北京:中国标准出版社, 2005
    中华人民共和国卫生部. GB5009.11-2003食品中总砷及无机砷的测定[S]. 北京:中国标准出版社, 2003
    U S Environmental Protection Agency (US EPA). Methodology for deriving ambient water quality criteria for the protection of human health[R]. Washington DC:Office of Water, US EPA, 2000
    U S Environmental Protection Agency (US EPA). Technical summary of information available on the bioaccumulation of arsenic in aquatic organisms[R]. Office of Science and Technology, Office of Water, US EPA, 2003
    Mogren C L, Kiparski G R V, Parker D R, et al. Survival, reproduction, and arsenic body burdens in Chironomus riparius exposed to arsenate and phosphate[J]. Science of the Total Environment, 2012, 425:60-65
    Ahearn G A, Mandal P K, Mandal A. Mechanisms of heavy-metal sequestration and detoxification in crustaceans:A review[J]. Journal of Comparative Physiology B, 2004, 174(6):439-452
    Chen L, Zhang W, Guo Z, et al. Effects of acclimation on arsenic bioaccumulation and biotransformation in freshwater medaka Oryzias mekongensis after chronic arsenic exposure[J]. Environmental Pollution, 2018, 238:17-25
    Bergey L L, Weis J S. Molting as a mechanism of depuration of metals in the fiddler crab, Uca pugnax[J]. Marine Environmental Research, 2007, 64(5):556-562
    Mogren C L, Webb S M, Walton W E, et al. Micro x-ray absorption spectroscopic analysis of arsenic localization and biotransformation in Chironomus riparius Meigen (Diptera:Chironomidae) and Culex tarsalis Coquillett (Culicidae)[J]. Environmental Pollution, 2013, 180(3):78-83
    Wrench J, Fowler S W, Vnlü M Y. Arsenic metabolism in a marine food chain[J]. Marine Pollution Bulletin, 1979, 10(1):18-20
    Sanders J G, Osman R W, Riedel G F. Pathways of arsenic uptake and incorporation in estuarine phytoplankton and the filter-feeding invertebrates Eurytemora affinis, Balanus improvisus, and Crassostrea virginica[J]. Marine Biology, 1989, 103(3):319-325
    Ciardullo S, Aureli F, Coni E, et al. Bioaccumulation potential of dietary arsenic, cadmium, lead, mercury, and selenium in organs and tissues of rainbow trout (Oncorhyncus mykiss) as a function of fish growth[J]. Journal of Agricultural & Food Chemistry, 2008, 56(7):2442-2451
    陈丽竹, 王丹, 曹瑞文, 等. 菲律宾蛤仔对三价和五价无机砷的富集转化规律[J]. 海洋通报, 2017, 36(3):326-332

    Chen L Z, Wang D, Cao R W, et al. Bioaccumulation and biotransformation of inorganic arsenic in Ruditapes philippinarum[J]. Marin Science Bulletin, 2017, 36(3):326-332(in Chinese)

    Zhang W, Guo Z, Zhou Y, et al. Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata[J]. Aquatic Toxicology, 2015, 158:33-40
    Gailer J, Lrgolic K J, Francesconi K A, et al. Metabolism of arsenic compounds by the blue mussel mytilus edulis after accumulation from seawater spiked with arsenic compounds[J]. Applied Organometallic Chemistry, 1995, 9(4):341-355
    Suhendrayatna, Ohki A, Nakajima T, et al. Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulation, transformation and toxicity of arsenic compounds on the Japanese medaka, Oryzias latipes[J]. Chemosphere, 2002, 46(2):319-324
    Suhendrayatna, Ohki A, Nakajima T, et al. Studies on the accumulation and transformation of arsenic in freshwater organisms II. Accumulation and transformation of arsenic compounds by Tilapia mossambica[J]. Chemosphere, 2002, 46(2):325-331
    Zhang W, Wang W X. Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes[J]. Science of the Total Environment, 2017, 616-617:594-601
    张伟, 黄良民. 海洋生物体内砷含量及其形态研究进展[J]. 生态毒理学报, 2019, 14(1):41-53

    Zhang W, Huang L M. Advances of arsenic contents and different species in marine organisms[J]. Asian Journal of Ecotoxicology, 2019, 14(1):41-53(in Chinese)

    Usese A, Chukwu O L, Rahman M M, et al. Concentrations of arsenic in water and fish in a tropical open lagoon, Southwest-Nigeria:Health risk assessment, Part 1[J]. Environmental Technology & Innovation, 2017, 8:164-171
    Wang Z H, Luo Z X, Yan C Z, et al. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa[J]. Environmental Science & Pollution Research, 2013, 20(10):7286-7295
    Zhang W, Guo Z, Song D, et al. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China[J]. Science of the Total Environment, 2018, 626:621-629
  • 加载中
计量
  • 文章访问数:  1503
  • HTML全文浏览数:  1503
  • PDF下载数:  91
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-27
王晓辉, 杨常亮, 郑王媛淇, 王洁, 张璟, 黄中情. 无机砷在淡水底栖动物摇蚊幼虫中的吸收和累积[J]. 生态毒理学报, 2020, 15(5): 288-300. doi: 10.7524/AJE.1673-5897.20191027002
引用本文: 王晓辉, 杨常亮, 郑王媛淇, 王洁, 张璟, 黄中情. 无机砷在淡水底栖动物摇蚊幼虫中的吸收和累积[J]. 生态毒理学报, 2020, 15(5): 288-300. doi: 10.7524/AJE.1673-5897.20191027002
Wang Xiaohui, Yang Changliang, Zheng Wangyuanqi, Wang Jie, Zhang Jing, Huang Zhongqing. Bioaccumulation of Inorganic Arsenic in the Freshwater Zoobenthos Chironomid Larvae[J]. Asian journal of ecotoxicology, 2020, 15(5): 288-300. doi: 10.7524/AJE.1673-5897.20191027002
Citation: Wang Xiaohui, Yang Changliang, Zheng Wangyuanqi, Wang Jie, Zhang Jing, Huang Zhongqing. Bioaccumulation of Inorganic Arsenic in the Freshwater Zoobenthos Chironomid Larvae[J]. Asian journal of ecotoxicology, 2020, 15(5): 288-300. doi: 10.7524/AJE.1673-5897.20191027002

无机砷在淡水底栖动物摇蚊幼虫中的吸收和累积

    通讯作者: 杨常亮, E-mail: yangcl227@163.com
    作者简介: 王晓辉(1994-),男,硕士研究生,研究方向为污染物迁移转化,E-mail:wxh19931114@163.com
  • 1. 云南大学建筑与规划学院, 昆明 650091;
  • 2. 云南大学生态与环境学院, 昆明 650091;
  • 3. 云南大学国际河流与生态安全研究院, 昆明 650091
基金项目:

国家自然科学基金资助项目(51168047)

摘要: 砷(As)是一种典型的毒害性类金属元素,在水环境中以多种化学形态存在,这影响了As的生物利用度和生理毒性效应。以摇蚊幼虫(chironomid larvae)为对象,探讨其暴露于亚砷酸盐(arsenite,As(Ⅲ))和砷酸盐(arsenate,As(Ⅴ))水溶液中的生物累积规律。结果表明,摇蚊幼虫中As的累积与暴露时间有关,且对As(Ⅲ)的累积较As(Ⅴ)明显。摇蚊幼虫对无机As的生物利用度较低,50 μg·L-1 As(Ⅲ)暴露组和100 μg·L-1 As(Ⅲ)暴露组中摇蚊幼虫对无机As的累积量与对照组相比均没有显著性差异;50 μg·L-1和100 μg·L-1 As(Ⅴ)暴露组中摇蚊幼虫体内总As浓度与对照组相比也没有显著增加。在高浓度的无机As暴露条件下,摇蚊幼虫对As(Ⅲ)的生物利用度高于As(Ⅴ)。暴露于As(Ⅲ)和As(Ⅴ)不同时间后,摇蚊幼虫中总As浓度随无机As暴露浓度升高而逐渐增加,但生物累积能力随无机As暴露浓度的升高反而降低。

English Abstract

参考文献 (54)

返回顶部

目录

/

返回文章
返回