丁草胺暴露对雄性褐菖鮋精细胞发育的干扰

李进寿, 陈懿娜, 何亮银, 郭团玉, 罗芬, 阮峻峰, 周逢芳. 丁草胺暴露对雄性褐菖鮋精细胞发育的干扰[J]. 生态毒理学报, 2023, 18(4): 450-458. doi: 10.7524/AJE.1673-5897.20221012001
引用本文: 李进寿, 陈懿娜, 何亮银, 郭团玉, 罗芬, 阮峻峰, 周逢芳. 丁草胺暴露对雄性褐菖鮋精细胞发育的干扰[J]. 生态毒理学报, 2023, 18(4): 450-458. doi: 10.7524/AJE.1673-5897.20221012001
Li Jinshou, Chen Yina, He Liangyin, Guo Tuanyu, Luo Fen, Ruan Junfeng, Zhou Fengfang. Exposure to Butachlor Disrupts Development of Sperm in Male Sebastiscus marmoratus[J]. Asian journal of ecotoxicology, 2023, 18(4): 450-458. doi: 10.7524/AJE.1673-5897.20221012001
Citation: Li Jinshou, Chen Yina, He Liangyin, Guo Tuanyu, Luo Fen, Ruan Junfeng, Zhou Fengfang. Exposure to Butachlor Disrupts Development of Sperm in Male Sebastiscus marmoratus[J]. Asian journal of ecotoxicology, 2023, 18(4): 450-458. doi: 10.7524/AJE.1673-5897.20221012001

丁草胺暴露对雄性褐菖鮋精细胞发育的干扰

    作者简介: 李进寿(1965-),男,教授,研究方向为生态毒理学,E-mail:ndtclsj@126.com
    通讯作者: 李进寿,E-mail:ndtclsj@126.com; 
  • 基金项目:

    福建省自然科学基金资助项目(2020J01426);宁德师范学院中青年科研项目(2022ZQ101);宁德师范学院科技特派员科研资助专项(2022ZQ401)

  • 中图分类号: X171.5

Exposure to Butachlor Disrupts Development of Sperm in Male Sebastiscus marmoratus

    Corresponding author: Li Jinshou, ndtclsj@126.com
  • Fund Project:
  • 摘要: 丁草胺是全球范围内使用最广泛的酰胺类除草剂之一。目前丁草胺对非目标生物的潜在毒性研究较多,但有关丁草胺对近海鱼类生殖毒性的研究鲜有报道。以近海鱼类褐菖鮋为研究对象,探讨丁草胺对海洋鱼类精细胞发育的影响及机制。以环境浓度(2、20和200 ng·L-1)的丁草胺对雄性褐菖鮋暴露50 d后,其精巢成熟精细胞数量下降,发育早期阶段的精原细胞与精母细胞数量上升,精巢雄激素睾酮(T)水平下降,Caspase-3活性上升,γ-谷酰胺转移酶(γ-GT)活性下降。相对荧光定量PCR分析结果显示,促卵泡激素受体基因(FSHRβ)与促黄体生成激素受体基因(LHRβ)mRNA表达量被抑制。这表明,丁草胺对雄性褐菖鮋有明显的生殖毒性,精巢支持细胞功能被抑制引起睾酮水平降低,进而导致精子发生被抑制。精巢细胞凋亡也是原因之一。
  • 加载中
  • 程艳红, 葛婧, 胡高洁, 等. 3种酰胺类除草剂对斑马鱼不同生长阶段的急性毒性效应[J]. 生态毒理学报, 2017, 12(6):171-178

    Cheng Y H, Ge J, Hu G J, et al. Acute toxicity effects of three amide herbicides to different life stages of zebrafish (Danio rerio)[J]. Asian Journal of Ecotoxicology, 2017, 12(6):171-178(in Chinese)

    Kumari N, Narayan O P, Rai L C. Understanding butachlor toxicity in Aulosira fertilissima using physiological, biochemical and proteomic approaches[J]. Chemosphere, 2009, 77(11):1501-1507
    Yu Y L, Chen Y X, Luo Y M, et al. Rapid degradation of butachlor in wheat rhizosphere soil[J]. Chemosphere, 2003, 50(6):771-774
    Mamun M I R, Park J H, Choi J H, et al. Development and validation of a multiresidue method for determination of 82 pesticides in water using GC[J]. Journal of Separation Science, 2009, 32(4):559-574
    Planas C, Caixach J, Santos F, et al. Occurrence of pesticides in Spanish surface waters. Analysis by high resolution gas chromatography coupled to mass spectrometry[J]. Chemosphere, 1997, 34(11):2393-2406
    Davis D. Washington State Pesticide Monitoring Program:1997 surface water sampling report[R]. Pullman, WA:Washington State Department of Ecology, 1998:16
    Griffini O, Bao M L, Barbieri C, et al. Occurrence of pesticides in the Arno River and in potable water-A survey of the period 1992-1995[J]. Bulletin of Environmental Contamination and Toxicology, 1997, 59(2):202-209
    Cerejeira M J, Viana P, Batista S, et al. Pesticides in Portuguese surface and ground waters[J]. Water Research, 2003, 37(5):1055-1063
    任晋, 黄翠玲, 赵国栋, 等. 固相萃取-高效液相色谱-质谱联机在线分析水中痕量除草剂[J]. 分析化学, 2001, 29(8):876-880

    Ren J, Huang C L, Zhao G D, et al. Determination of herbicides in drinking water by solid phase extraction-liquid chromatography-mass spectrometry[J]. Chinese Journal of Analytieal Chemistry, 2001, 29(8):876-880(in Chinese)

    王子健, 吕怡兵, 王毅, 等. 淮河水体取代苯类污染及其生态风险[J]. 环境科学学报, 2002, 22(3):300-304

    Wang Z J, Lv Y B, Wang Y, et al. Assessing the ecological risk of substituted benzenes in Huaihe River, China[J]. Acta Scientiae Circumstantiae, 2002, 22(3):300-304(in Chinese)

    黄群腾. 水环境中36种农药残留的同时分析方法及其应用[D]. 厦门:厦门大学, 2008:70-71 Huang Q T. Simultaneously determination method for 36 pesticides in aquatic environment and its application[D]. Xiamen:Xiamen University, 2008

    :70-71(in Chinese)

    Mohanty S R, Bharati K, Moorthy B T S, et al. Effect of the herbicide butachlor on methane emission and ebullition flux from a direct-seeded flooded rice field[J]. Biology and Fertility of Soils, 2001, 33(3):175-180
    Abigail M E A, Samuel S M, Ramalingam C. Addressing the environmental impacts of butachlor and the available remediation strategies:A systematic review[J]. International Journal of Environmental Science and Technology, 2015, 12(12):4025-4036
    Chen C, Wang Y H, Zhao X P, et al. Comparative and combined acute toxicity of butachlor, imidacloprid and chlorpyrifos on earthworm, Eisenia fetida[J]. Chemosphere, 2014, 100:111-115
    He H Z, Yu J, Chen G K, et al. Acute toxicity of butachlor and atrazine to freshwater green alga Scenedesmus obliquus and cladoceran Daphnia carinata[J]. Ecotoxicology and Environmental Safety, 2012, 80:91-96
    Geng B R, Yao D, Xue Q Q. Acute toxicity of the pesticide dichlorvos and the herbicide butachlor to tadpoles of four anuran species[J]. Bulletin of Environmental Contamination and Toxicology, 2005, 75(2):343-349
    Liu W Y, Wang C Y, Wang T S, et al. Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (Fejervarya limnocharis) in subtropical Taiwan[J]. Ecotoxicology, 2011, 20(2):377-384
    张彬彬, 傅荣恕. 乙草胺对生物的急性毒理研究[J]. 滨州医学院学报, 2008, 31(1):36-37

    , 39 Zhang B B, Fu R S. Toxicity of acetochlor on loach[J]. Journal of Binzhou Medical University, 2008, 31(1):36-37, 39(in Chinese)

    Tu W Q, Niu L L, Liu W P, et al. Embryonic exposure to butachlor in zebrafish (Danio rerio):Endocrine disruption, developmental toxicity and immunotoxicity[J]. Ecotoxicology and Environmental Safety, 2013, 89:189-195
    Chang J H, Liu S Y, Zhou S L, et al. Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio)[J]. Experimental and Toxicologic Pathology:Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 2013, 65(1-2):205-209
    Ateeq B, Farah M A, Ahmad W. Evidence of apoptotic effects of 2,4-D and butachlor on walking catfish, Clarias batrachus, by transmission electron microscopy and DNA degradation studies[J]. Life Sciences, 2006, 78(9):977-986
    李进寿, 罗芬, 阮少江, 等. 联苯菊酯暴露对雌性褐菖鲉卵巢发育的影响及其毒性机制[J]. 生态毒理学报, 2016, 11(6):323-329

    Li J S, Luo F, Ruan S J, et al. Bifenthrin exposure disrupts the development of ovary in female Sebastiscus marmoratus and the mechanism involved[J]. Asian Journal of Ecotoxicology, 2016, 11(6):323-329(in Chinese)

    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72:248-254
    Sun L B, Zhang J L, Zuo Z H, et al. Influence of triphenyltin exposure on the hypothalamus-pituitary-gonad axis in male Sebastiscus marmoratus[J]. Aquatic Toxicology, 2011, 104(3-4):263-269
    Sun L B, Zuo Z H, Luo H M, et al. Chronic exposure to phenanthrene influences the spermatogenesis of male Sebastiscus marmoratus:U-shaped effects and the reason for them[J]. Environmental Science & Technology, 2011, 45(23):10212-10218
    Li J S, Sun L B, Zuo Z H, et al. Exposure to paclobutrazol disrupts spermatogenesis in male Sebastiscus marmoratus[J]. Aquatic Toxicology, 2012, 122-123:120-124
    Li J S, Luo F, Liu L Y, et al. Exposure to bifenthrin disrupts the development of testis in male Sebastiscus marmoratus[J]. Acta Oceanologica Sinica, 2017, 36(2):57-61
    Xiang Q Q, Xu B F, Ding Y L, et al. Oxidative stress response induced by butachlor in zebrafish embryo/larvae:The protective effect of vitamin C[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(2):208-215
    Forsgren K L, Riar N, Schlenk D. The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions[J]. General and Comparative Endocrinology, 2013, 186:101-107
    Jégou B. The Sertoli cell in vivo and in vitro[J]. Cell Biology and Toxicology, 1992, 8(3):49-54
    Rasmussen T H, Teh S J, Bjerregaard P, et al. Anti-estrogen prevents xenoestrogen-induced testicular pathology of eelpout (Zoarces viviparus)[J]. Aquatic Toxicology, 2005, 72(3):177-194
    Sharpe R M, McKinnell C, Kivlin C, et al. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood[J]. Reproduction, 2003, 125(6):769-784
    Schwartzman R A, Cidlowski J A. Apoptosis:The biochemistry and molecular biology of programmed cell death[J]. Endocrine Reviews, 1993, 14(2):133-151
    Steller H. Mechanisms and genes of cellular suicide[J]. Science, 1995, 267(5203):1445-1449
    孙琦, 范咏梅, 赖柯华, 等. 呋虫胺对斑马鱼胚胎-幼鱼生长发育及细胞凋亡的影响[J]. 生态毒理学报, 2016, 11(3):356-364

    Sun Q, Fan Y M, Lai K H, et al. Effects of dinotefuran on the embryonic and larvae development and apoptosis in zebrafish (Danio rerio)[J]. Asian Journal of Ecotoxicology, 2016, 11(3):356-364(in Chinese)

    Cohen G M. Caspases:The executioners of apoptosis[J]. The Biochemical Journal, 1997, 326(Pt 1):1-16
    Migliarini B, Campisi A M, Maradonna F, et al. Effects of cadmium exposure on testis apoptosis in the marine teleost Gobius niger[J]. General and Comparative Endocrinology, 2005, 142(1-2):241-247
    Weber L P, Kiparissis Y, Hwang G S, et al. Increased cellular apoptosis after chronic aqueous exposure to nonylphenol and quercetin in adult medaka (Oryzias latipes)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2002, 131(1):51-59
    Patel M R, Scheffler B E, Wang L, et al. Effects of benzo(a)pyrene exposure on killifish (Fundulus heteroclitus) aromatase activities and mRNA[J]. Aquatic Toxicology, 2006, 77(3):267-278
    Wu Y S, He Z, Zhang L H, et al. Ontogeny of immunoreactive LH and Fsh cells in relation to early ovarian differentiation and development in protogynous hermaphroditic ricefield eel Monopterus albus[J]. Biology of Reproduction, 2012, 86(3):93
    Shimizu A, Hamaguchi M, Ito H, et al. Appearances and chronological changes of mummichog Fundulus heteroclitus FSH cells and LH cells during ontogeny, sexual differentiation, and gonadal development[J]. General and Comparative Endocrinology, 2008, 156(2):312-322
    Miranda L A, Strüssmann C A, Somoza G M. Effects of light and temperature conditions on the expression of GnRH and GtH genes and levels of plasma steroids in Odontesthes bonariensis females[J]. Fish Physiology and Biochemistry, 2009, 35(1):101-108
  • 加载中
计量
  • 文章访问数:  1187
  • HTML全文浏览数:  1187
  • PDF下载数:  116
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-10-12
李进寿, 陈懿娜, 何亮银, 郭团玉, 罗芬, 阮峻峰, 周逢芳. 丁草胺暴露对雄性褐菖鮋精细胞发育的干扰[J]. 生态毒理学报, 2023, 18(4): 450-458. doi: 10.7524/AJE.1673-5897.20221012001
引用本文: 李进寿, 陈懿娜, 何亮银, 郭团玉, 罗芬, 阮峻峰, 周逢芳. 丁草胺暴露对雄性褐菖鮋精细胞发育的干扰[J]. 生态毒理学报, 2023, 18(4): 450-458. doi: 10.7524/AJE.1673-5897.20221012001
Li Jinshou, Chen Yina, He Liangyin, Guo Tuanyu, Luo Fen, Ruan Junfeng, Zhou Fengfang. Exposure to Butachlor Disrupts Development of Sperm in Male Sebastiscus marmoratus[J]. Asian journal of ecotoxicology, 2023, 18(4): 450-458. doi: 10.7524/AJE.1673-5897.20221012001
Citation: Li Jinshou, Chen Yina, He Liangyin, Guo Tuanyu, Luo Fen, Ruan Junfeng, Zhou Fengfang. Exposure to Butachlor Disrupts Development of Sperm in Male Sebastiscus marmoratus[J]. Asian journal of ecotoxicology, 2023, 18(4): 450-458. doi: 10.7524/AJE.1673-5897.20221012001

丁草胺暴露对雄性褐菖鮋精细胞发育的干扰

    通讯作者: 李进寿,E-mail:ndtclsj@126.com; 
    作者简介: 李进寿(1965-),男,教授,研究方向为生态毒理学,E-mail:ndtclsj@126.com
  • 1. 宁德师范学院生命科学学院, 宁德 352100;
  • 2. 闽东水产品精深加工福建省高校工程研究中心, 宁德 352100;
  • 3. 国家海洋局海西海洋特色生物种质资源及生物制品开发公共服务平台, 宁德 352100;
  • 4. 福建省古田县松吉初级中学, 古田 352200;
  • 5. 厦门海洋职业技术学院, 厦门 361100
基金项目:

福建省自然科学基金资助项目(2020J01426);宁德师范学院中青年科研项目(2022ZQ101);宁德师范学院科技特派员科研资助专项(2022ZQ401)

摘要: 丁草胺是全球范围内使用最广泛的酰胺类除草剂之一。目前丁草胺对非目标生物的潜在毒性研究较多,但有关丁草胺对近海鱼类生殖毒性的研究鲜有报道。以近海鱼类褐菖鮋为研究对象,探讨丁草胺对海洋鱼类精细胞发育的影响及机制。以环境浓度(2、20和200 ng·L-1)的丁草胺对雄性褐菖鮋暴露50 d后,其精巢成熟精细胞数量下降,发育早期阶段的精原细胞与精母细胞数量上升,精巢雄激素睾酮(T)水平下降,Caspase-3活性上升,γ-谷酰胺转移酶(γ-GT)活性下降。相对荧光定量PCR分析结果显示,促卵泡激素受体基因(FSHRβ)与促黄体生成激素受体基因(LHRβ)mRNA表达量被抑制。这表明,丁草胺对雄性褐菖鮋有明显的生殖毒性,精巢支持细胞功能被抑制引起睾酮水平降低,进而导致精子发生被抑制。精巢细胞凋亡也是原因之一。

English Abstract

参考文献 (42)

返回顶部

目录

/

返回文章
返回