随着现代农业科技的发展,人工合成的杀虫剂已成为最常见的污染源之一[1]。20世纪80年代有机氯及有机磷等高毒性农药被逐步淘汰后,三唑类、除虫聚酯类与酰胺类等人工合成的相对毒性较低的农药被大量使用。其中,酰胺类是亚洲使用最广泛的除草剂[2],仅在我国每年消耗量即在8 000 t以上[3],且使用量呈逐年攀升的趋势。这些药物在使用过程中除了少量作用于靶生物外,更多的药物残留通过农田废水污染了河流与湖泊等淡水水域,且通过江河等汇集于近海海域。例如,Mamun等[4]的报道显示在日本一些地区地表水丁草胺(butachlor)的浓度达到0.1~1.4 μg·L-1,欧美国家的调查也显示,包括甲草胺、乙草胺、丁草胺及乙丙甲草胺在内的多种酰胺类检出浓度达0.022~3.68 μg·L-1 [5-8],在中国,华北地区与淮河水域地表水中乙草胺的最高检出浓度分别为1.64 μg·L-1与2.0 μg·L-1[9-10]。而酰胺类除草剂对近海水域的污染方面,黄群腾[11]2007年在我国福建省九龙江口及厦门近海海水检测到乙草胺、丁草胺及异丙甲草胺等多种酰胺类的物质,其中丁草胺浓度达到16.7~104.9 ng·L-1。
丁草胺是目前国内农田使用最广泛的三大除草剂之一[3],广泛用在作物出苗前或出苗后早期阶段以防治各种有害杂草[12],仅在在亚洲每年的使用量就达到4 500 t[13]。有关丁草胺对水生生物的毒副作用,已有报道显示对蚯蚓(Eisenia fetida)[14]、水蚤(Daphnia carinata)[15]、姬蛙(Microhyla)蝌蚪[16]、泽蛙(Fejervarya limnocharis)[17]等土壤与水生动物均存在毒性。对鱼类,乙草胺可导致泥鳅(Misgurnus anguillicaudatus)血红细胞的变异[18],斑马鱼(Danio rerio)胚胎以4~20 mmol·L-1浓度梯度的丁草胺暴露84 h后,胚胎孵化过程受到阻碍且出现畸形和死亡,胚胎雌激素应答基因(Vtg1)表达被显著诱导[19],斑马鱼在25、50和100 μg·L-1浓度的丁草胺中暴露30 d后,其繁殖力出现降低,雄性性体比(GSI)指数在50 μg·L-1和100 μg·L-1浓度组显著下降,雌性斑马鱼在100 μg·L-1浓度组血浆睾酮(T)和17-雌二醇(E2)水平出现显著下降[20],Ateeq等[21]的研究则显示丁草胺可引起雄性鲶鱼(Clarias batrachus)精巢小叶支持细胞出现大量凋亡而降低繁殖力。以上有关丁草胺对鱼类的毒性研究主要针对的是淡水鱼类,但未见对近海鱼类毒性研究。由于丁草胺等酰胺类除草剂在土壤、地下水与地表水体均被检测到,且在近海海域有较严重的污染,因此该类农药对近海鱼类的毒性研究具有重要的现实意义。本实验参照黄腾群[11]对九龙江口及厦门近海水体环境浓度的检测结果,设置2、20、200 ng L-1浓度梯度的丁草胺对我国东南沿海常见的经济鱼类褐菖鮋(Sebastiscus marmoratus)进行50 d的慢性水体暴露,以调查该类除草剂对海洋鱼类的生殖毒性。本研究对除草剂等人工合成的农药在使用过程中对水环境造成的生态风险的评估以及规范使用相关农药具有一定意义。
丁草胺(标准品,纯度≥95%,产品货号:B114549),购自上海泽叶生物科技有限公司。
试验用鱼参照李进寿等[22]的方法进行驯化和暴露。
驯化实验:褐菖鮋为霞浦县溪南镇七星村海域购得的海捕鱼,雄鱼大小规格(67.62±3.58) g;驯化期间每天定时定量投喂饵料,且定期观察摄食情况及水质变化;驯化前将砂滤海水用预先经过24 h曝气的淡水将盐度调整为22~24,驯化时间7 d。
暴露实验:暴露实验以乙腈溶剂对照组、低浓度2 ng·L-1组、中浓度20 ng·L-1组和高浓度200 ng·L-1组的浓度梯度分4缸进行,200 ng·L-1、20 ng·L-1和2 ng·L-1的药物组分别加入200 μL预先用乙腈为溶剂配制的60.00、6.00、0.60 ng·μL-1的丁草胺应用液,对照组加入等量体积(200 μL)的乙腈溶剂,并立即将缸内实验水体混匀。暴露实验过程每天在大致相同的时间将暴露用实验海水更换1/2(30 L),同时补充1/2剂量的丁草胺药物。大约在每天换水前2 h,按照褐菖鮋体质量2%~3%的比例投喂鱼配合饲料,换水过程用虹吸管清除水缸底部的鱼粪和未摄食的饲料残饵。实验过程中每隔7 d将水缸清洗干净且全部更换暴露用水及丁草胺药物,暴露实验时间为50 d。暴露实验期间需要利用增氧设备对各缸水体进行不间断充气以保证实验水体的供氧充足。
暴露实验结束进行采样,用于生化指标测定的试验样品置于-20 ℃的冰柜中备用;分子实验的样品放在-80 ℃超低温冰箱保存等待检测;用于组织学观察的褐菖鮋精巢组织以饱和的三硝基苯酚溶液固定保存于4 ℃冰箱,并在隔夜后更换新的三硝基苯酚固定液。杀鱼取样时对各暴露组所有鱼的精巢、肝脏和体质量进行称量,以检测各暴露组性体比指数(GSI)和肝体比指数(HSI)。
将饱和三硝基苯酚固定的褐菖鮋精巢经流水清洗过夜后以梯度浓度的乙醇、正丁醇进行脱水、透明与透蜡处理后以石蜡包埋方式制作切片,在切片机上以4 μm厚度切片。切片采用苏木精和伊红(H.E.)染色后,镜检对照组及各暴露组精细胞的发育状况。脱水步骤:以V(正丁醇)∶V(无水乙醇)∶V(水)=20∶50∶30的溶剂处理2 h;以V(正丁醇)∶V(无水乙醇)∶V(水)=45∶45∶10的溶剂处理2 h;以V(正丁醇)∶V(无水乙醇)=75∶25的溶剂处理2 h;以V(正丁醇)∶V(无水乙醇)=85∶15的溶剂处理1 h;以V(正丁醇)∶V(无水乙醇)=95∶5的溶剂处理1 h;以正丁醇处理1 h,正丁醇处理1 h,正丁醇处理1 h(共处理3次)。透明:正丁醇和石蜡各半的混合液处理30 min。透蜡:石蜡Ⅰ透蜡1 h,石蜡Ⅱ透蜡1 h。
褐菖鮋精巢组织先进行匀浆处理,以事先经过预冷且pH调整为7.4的磷酸缓冲液为匀浆液,匀浆后在4 ℃条件下以2 000 r·min-1速度离心5 min后取精巢组织上清液用于测定Caspase-3活性。Caspase-3活性用Caspase试剂盒(Keygene Biotech Co., Ltd.,中国南京)按照说明书提供的方法测定。暴露组样品Caspase-3活性均需调整为等蛋白浓度后与对照组比较分析。样品蛋白质浓度以Bradford[23]的方法测定,蛋白测定时以牛血清蛋白为标准。
γ-GT活性测定时精巢组织的处理同Caspase-3活性测定的方法,γ-GT活性按照γ-GT试剂盒(Keygene Biotech Co., Ltd.,中国南京)说明书的方法进行测定。γ-GT的单位为U·g-1,试验条件下15 min产生1 μmol的底物定义为1个酶活单位。
睾酮(T)水平以Sun等[24]的方法测定。测定前每个精巢组织以m(精巢)∶m(乙醇)=1∶9的比例在冰浴条件下匀浆。匀浆后的样品在-80 ℃超低温至少保存24 h,再用3 mL的乙酸乙酯萃取3次。萃取物置入5 mL离心管内,用在氮吹仪下吹干后加入0.5 mL缓冲液。T水平的测定采用放射性免疫方法使用试剂盒按照使用说明书测定(北京福瑞生物工程公司)。T检测限为0.1~30 nmol·L-1;批间极差12‰。
褐菖鮋精巢总RNA用试剂盒提取,cDNA亦用试剂盒反转录。总RNA的浓度与纯度的测定用Nanodrop ND-1000分光光度计测定,CYP-19s基因的cDNA片段以笔者此前的方法[22]扩增。褐菖鮋靶基因CYP-19s、FSHRβ与LHRβ的cDNA片段采用Sun等[25]的方法进行扩增。基因mRNA表达的测定也采用Sun等[25]的方法。基因相对表达量计算软件(REST-MCS ®-version 2)用于靶基因mRNA相对表达量的计算。靶基因CYP-19a引物序列为F:5’-GCAGTGCGTGTTGGAGATG-3’,R:5’-CTGCTGCGACAGGTTGTTG-3’;CYP-19b引物序列F:5’-GCTGAGGATAGTGGAGGAGATG-3’,R:5’- GACCGATGTTGAGAATGATGTT-3’;FSHRβ引物序列F:5’-TGGTTGTCATGGCAGCAGTG-3’,R:5’-GTGGTGTCGATGAATTGGGTT-3’;LHRβ引物序列F:5’-AGAAGGAGGGCTGTTCCAAGT-3’,5’-ATGATGCTGTTGTAGGTGGT-3’。
实验结果以SPSS11.0软件进行单因素方差分析(ANOVA),若P<0.05则为显著性差异,各组数据以平均值±标准偏差(mean±SD)表达。
如图1所示,褐菖鮋在丁草胺各个浓度暴露组与对照组间GSI与HSI均未观察到显著性差异(P>0.05)。
图1 雄性褐菖鮋在丁草胺暴露50 d后性体比(GSI)和肝体比(HSI)的变化
注:数据用平均值±标准偏差(means±SD)表达(n=25);实验数据用单因素方差分析和Duncan分析检验,不同字母表示差异显著P<0.05,相同字母表示差异不显著P>0.05。
Fig. 1 The gonadosomatic index (GSI) and hepatopancreas somatic index (HSI ) changes of male S. marmoratus in butachlor exposure for 50 d
Note: Data are presented as means±SD (n=25); means of exposures not sharing a common letter are significantly different at P<0.05, and sharing a common letter are not different at P>0.05, as assessed by One-way ANOVA followed by the Dunnett’s test.
雄性褐菖鮋经过不同浓度的丁草胺暴露50 d后的精巢细胞发育的组织学变化如图2所示,从图2中可以观察到随着药物浓度的升高,精巢成熟精子(SP)数量呈减少趋势。同时从组织学切片可以观察到精巢由不同的精巢小叶,每个小叶内含有处于不同发育阶段的精细胞,包括在发育早期阶段的精原细胞(SG)、精母细胞(SC)以及成熟精子。每个暴露组随机取3个不同的精巢分析统计各期生殖细胞的平均百分比,结果显示各暴露组SG与SC占比与对照组相比出现上升,其中SG在中浓度的20 ng·L-1组与高浓度的200 ng·L-1出现显著性升高,而SC在各个浓度组均出现显著性升高,而SP的占比则较对照组出现下降,其中20 ng·L-1组与200 ng·L-1组精巢中SP比例显著低于对照组(图3)。
图2 丁草胺暴露50 d后雄性褐菖鮋精巢的组织学变化切片图
注:(a)对照,(b) 2 ng·L-1,(c) 20 ng·L-1,(d) 200 ng·L-1;标尺为50 μm;SG为精原细胞,SC为精母细胞,SP为成熟精子细胞。
Fig. 2 Histological changes of the testes stained with hematoxylin and eosin in male S. marmoratus exposed to butachlor for 50 d
Note: (a) Control; (b) 2 ng·L-1; (c) 20 ng·L-1; (d) 200 ng·L-1; Bar=50 μm; SC, spermatocytes; SG, spermatogonia; SP, sperm.
图3 雄性褐菖鮋经过丁草胺暴露50 d后各阶段精细胞百分比的变化
注:SG为精原细胞,SC为精母细胞,SP为成熟精子细胞;数据用平均值±标准偏差(means±SD)表达(n=3);实验数据用单因素方差分析和Duncan分析检验,不同字母表示差异显著P<0.05,相同字母表示差异不显著P>0.05。
Fig. 3 Percentage of spermatocysts at different stages of development in male S. marmoratus exposed to butachlor for 50 d
Note: SG, spermatogonia; SC, spermatocytes; SP, sperm; the data are expressed as means±SD (n=3); means of exposures not sharing a common letter are significantly different at P<0.05, and sharing a common letter are not different at P>0.05, as assessed by One-way ANOVA followed by the Dunnett’s test.
如图4所示,褐菖鮋在丁草胺暴露50 d后,各浓度暴露组的雄性激素睾酮(T)水平呈现丁草胺浓度依赖式的下降趋势,且全部显著低于对照组(P<0.05)。
图4 雄性褐菖鮋经丁草胺暴露50 d后精巢雄性激素睾酮(T)的变化
注:实验数据用平均值±标准偏差(means±SD)表示(n=6);组间多重数据比较采用单因素方差分析和Duncan分析检验,不同字母表示差异显著P<0.05,相同字母表示差异不显著P>0.05。
Fig. 4 The content of testosterone (T) in the testis of male S. marmoratus exposed to butachlor for 50 d
Note: Data are presented as mean±SD (n=6); means of exposures not sharing a common letter are significantly different at P<0.05, and sharing a common letter are not different at P>0.05, as assessed by One-way ANOVA followed by the Dunnett’s test.
经过丁草胺暴露50 d后褐菖鮋精巢Caspase-3的活性变化如图5所示,精巢Caspase-3活性变化与丁草胺呈浓度依赖性增强趋势,其中的20 ng·L-1组和200 ng·L-1组均较对照组出现显著性增强(P<0.05),但2 ng·L-1组Caspase-3活性升高不显著(P>0.05)。
图5 雄性褐菖鮋在丁草胺暴露50 d后精巢Caspase-3活性的变化
注:实验数据用平均值±标准偏差(means±SD)表示(n=5~6);组间多重数据比较采用单因素方差分析和Duncan分析检验,不同字母表示差异显著P<0.05,相同字母表示差异不显著P>0.05。
Fig. 5 Caspase-3 activities in the testis of male S. marmoratus exposed to butachlor for 50 d
Note: Data are presented as mean±SD (n=5~6); means of exposures not sharing a common letter are significantly different at P<0.05, and sharing a common letter are not different at P>0.05, as assessed by One-way ANOVA followed by the Dunnett’s test.
如图6所示,褐菖鮋经丁草胺暴露50 d后,其精巢γ-GT活性与丁草胺浓度呈负相关性变化趋势,其中200 ng·L-1组γ-GTP活性显著低于对照组(P<0.05)。
图6 丁草胺暴露50 d后雄性褐菖鮋精巢γ-GT的活性变化
注:实验数据用平均值±标准偏差(means±SD)表示(n=6);组间数据比较采用单因素方差分析和Duncan分析检验,不同字母表示差异显著P<0.05,相同字母表示差异不显著P>0.05。
Fig. 6 γ-GT activities in the testis of male S. marmoratus exposed to butachlor for 50 d
Note: Data are presented as mean±SD (n=6); means of exposures not sharing a common letter are significantly different at P<0.05, and sharing a common letter are not different at P>0.05, as assessed by One-way ANOVA followed by the Dunnett’s test.
如图7所示,褐菖鮋在丁草胺暴露50 d后,其精巢芳香化酶基因(CYP-19a、CYP-19b)、促卵泡激素受体基因(FSHRβ)与促黄体生成激素受体基因(LHRβ)mRNA表达量均表现出对丁草胺的浓度依赖性下降趋势,其中CYP-19a基因表达量在中浓度的20 ng·L-1组和高浓度的200 ng·L-1组均出现显著性下降(P<0.05);CYP-19b基因的表达量在低浓度的2 ng·L-1组与中浓度的20 ng·L-1组下降不显著(P>0.05),高浓度的200 ng·L-1组表达量有显著性下降(P<0.05);FSHRβ基因的表达量在高浓度的200 ng·L-1组显著性下降;LHRβ基因的表达量在中浓度的20 ng·L-1组与高浓度的200 ng·L-1组均显著性下降(P<0.05)。
图7 雄性褐菖鮋在丁草胺暴露50 d后精巢相关基因mRNA表达量的变化
注:基因的相对表达量以β-actin为内参;实验数据用平均值±标准偏差(means±SD)表示(n=4~6);组间多重数据比较采用单因素方差分析实验数据用单因素方差分析和Duncan分析检验,不同字母表示差异显著P<0.05,相同字母表示差异不显著P>0.05。
Fig. 7 Relative mRNA expression of related gene of the testis in male S. marmoratus exposed to butachlor for 50 d
Note:Values were normalized against β-actin; the data are presented as mean±SD (n=6); means of exposures not sharing a common letter are significantly different at P<0.05, and sharing a common letter are not different at P>0.05, as assessed by One-way ANOVA followed by the Dunnett’s test.
在鱼类生殖毒性的研究中,人工合成的除草剂[26]、杀虫剂[22,27]等农药是热点之一,这些报道均表明这些低毒性农药对近海鱼类具有明显的生殖毒性。而酰胺类农药对淡水水域水生生物的毒性也已有诸多报道。He等[15]报道丁草胺对斜生栅藻(Scenedesmus obliquus)的96 h-EC50为2.31 mg·L-1,对隆线蚤(Daphnia carinata)的48 h-EC50为3.40 mg·L-1,显示丁草胺对这2种浮游生物均具有中等毒性。在鱼类中,Xiang等[28]报道以1、2、5、10、15 μmol·L-1浓度梯度的丁草胺对斑马鱼(Danio rerio)暴露72 h后,其胚胎死亡率和畸形率均出现升高,且与丁草胺呈剂量依赖性上升趋势。Chang等[20]报道雌性斑马鱼在25、50和100 μg·L-1浓度的丁草胺暴露30 d后,HSI无显著变化,雄鱼GSI在50 μg·L-1和100 μg·L-1浓度组出现显著性下降,雌雄鱼血浆睾酮(T)、17-雌二醇(E2)、血浆甲状腺素(T4)和三碘甲状腺原氨酸(T3)水平及VTG水平等出现不同程度的上升或下降。这些报道均表明丁草胺对斑马鱼具有明显的生殖毒性,并可导致内分泌系统的紊乱。然而,有关酰胺类除草剂对近海鱼类的生殖毒性却未见报道,因此开展酰胺类除草剂对近海鱼类的潜在毒性研究具有现实的意义。
在本实验中,尽管丁草胺暴露未导致褐菖鮋GSI与HSI出现显著性变化,但组织学观察的结果表明丁草胺的暴露引起雄性褐菖鮋性腺精细胞的发育被抑制,体现为成熟精子(SP)数量大量减少,而处于发育早期的精原细胞(SG)与精母细胞(SC)却显著增加。环境毒物对鱼类GSI的影响方面,或许与水域盐度相关。Chang等[20]报道雄性斑马鱼在25、50和100 μg·L-1的丁草胺中暴露30 d后,GSI在50 μg·L-1和100 μg·L-1浓度组出现显著性下降的现象。Forsgren等[29]的报道也指以0.1 μg·L-1与1.5 μg·L-1浓度的联苯菊酯对雄性虹鳟鱼(Oncorhynchus mykiss)进行水体暴露14 d后其GSI无显著变化,但雌性虹鳟鱼GSI则有显著性下降。鱼类精巢由数量极多的精巢小叶组成,其壁上的支持细胞是支持精子发育的营养通路,因此支持细胞在精子发育过程中起到关键作用[30]。而在鱼类精巢的发育过程中,γ-谷酰胺转移酶(γ-GT)对维持支持细胞的活性具有重要作用,因此γ-GT活性是检验支持细胞功能的重要标记物[30-31]。在本研究中,褐菖鮋精巢γ-GT活性的下降说明丁草胺的暴露导致精巢支持细胞功能降低,研究中FSHRβ、LHRβ基因表达量的下降也证明精巢支持细胞功能降低,因为FSH激素与LH激素在精巢支持细胞的增殖过程中均起到决定性的作用[32]。
在动物机体内,为维持体内环境的稳定,不同组织的细胞凋亡是普遍现象,涉及到组织的修复与重塑等过程[33-35]。在此过程中,Caspase家族酶在激活细胞凋亡通道方面担负主要功能,其中Caspase-3是最关键的酶之一[36]。本实验结果显示,褐菖鮋在丁草胺暴露后精巢中Caspase-3活性增强,这表明丁草胺的暴露加剧褐菖鮋睾丸精细胞的凋亡。已有研究表明环境毒物如重金属镉[37]、壬基酚(nonylphenol)与槲皮素(quercetin)等[38]诱导引起的细胞凋亡都可成为影响性腺发育的重要原因,因为这会引起大量精细胞在发育早期出现凋亡,必然导致成熟精子数量大量减少,精巢组织学分析结果也证明了这一点。在本研究中,丁草胺的暴露导致了褐菖鮋精巢细胞色素P450芳香化酶(CYP-19s)基因的表达被抑制,这是因为环境有毒物质会影响CYP-19s基因表达量的变化[39]。硬骨鱼类下丘脑-垂体-性腺轴(hypothalamic-pituitary-gonadal axis, HPG)是调节性腺发育的主要内分泌系统[26-27],而环境毒性物质可通过抑制脑垂体FSHβ与LHβ基因的表达[40-41],从而减少FSH激素与LH激素的分泌。FSH激素与LH激素,在雄性鱼类中对精巢小叶维持支持细胞的功能具有重要作用[42],精巢小叶支持细胞功能的下降导致精细胞发育受阻是引起成熟精子数量减少的内在机制。研究中褐菖鮋精巢FSHRβ与LHRβ表达受到抑制而引起精巢睾酮分泌减少,而睾酮含量的下降是精细胞发育被抑制的原因之一,因为鱼类性腺性激素水平在调节性腺发育的过程起重要作用[24]。
综上所述,丁草胺的暴露引起精巢中γ-GT活性下降,说明支持细胞受到损伤,进而导致精巢FSHRβ与LHRβ表达下调,导致睾酮水平下降,抑制了精子发生。Caspase-3活性增强促使精巢细胞发生凋亡,是导致成熟精子数量大量减少的另一个原因。
[1] 程艳红, 葛婧, 胡高洁, 等. 3种酰胺类除草剂对斑马鱼不同生长阶段的急性毒性效应[J]. 生态毒理学报, 2017, 12(6): 171-178
Cheng Y H, Ge J, Hu G J, et al. Acute toxicity effects of three amide herbicides to different life stages of zebrafish (Danio rerio) [J]. Asian Journal of Ecotoxicology, 2017, 12(6): 171-178 (in Chinese)
[2] Kumari N, Narayan O P, Rai L C. Understanding butachlor toxicity in Aulosira fertilissima using physiological, biochemical and proteomic approaches [J]. Chemosphere, 2009, 77(11): 1501-1507
[3] Yu Y L, Chen Y X, Luo Y M, et al. Rapid degradation of butachlor in wheat rhizosphere soil [J]. Chemosphere, 2003, 50(6): 771-774
[4] Mamun M I R, Park J H, Choi J H, et al. Development and validation of a multiresidue method for determination of 82 pesticides in water using GC [J]. Journal of Separation Science, 2009, 32(4): 559-574
[5] Planas C, Caixach J, Santos F, et al. Occurrence of pesticides in Spanish surface waters. Analysis by high resolution gas chromatography coupled to mass spectrometry [J]. Chemosphere, 1997, 34(11): 2393-2406
[6] Davis D. Washington State Pesticide Monitoring Program: 1997 surface water sampling report [R]. Pullman, WA: Washington State Department of Ecology, 1998: 16
[7] Griffini O, Bao M L, Barbieri C, et al. Occurrence of pesticides in the Arno River and in potable water—A survey of the period 1992-1995 [J]. Bulletin of Environmental Contamination and Toxicology, 1997, 59(2): 202-209
[8] Cerejeira M J, Viana P, Batista S, et al. Pesticides in Portuguese surface and ground waters [J]. Water Research, 2003, 37(5): 1055-1063
[9] 任晋, 黄翠玲, 赵国栋, 等. 固相萃取-高效液相色谱-质谱联机在线分析水中痕量除草剂[J]. 分析化学, 2001, 29(8): 876-880
Ren J, Huang C L, Zhao G D, et al. Determination of herbicides in drinking water by solid phase extraction-liquid chromatography-mass spectrometry [J]. Chinese Journal of Analytieal Chemistry, 2001, 29(8): 876-880 (in Chinese)
[10] 王子健, 吕怡兵, 王毅, 等. 淮河水体取代苯类污染及其生态风险[J]. 环境科学学报, 2002, 22(3): 300-304
Wang Z J, Lv Y B, Wang Y, et al. Assessing the ecological risk of substituted benzenes in Huaihe River, China [J]. Acta Scientiae Circumstantiae, 2002, 22(3): 300-304 (in Chinese)
[11] 黄群腾. 水环境中36种农药残留的同时分析方法及其应用[D]. 厦门: 厦门大学, 2008: 70-71
Huang Q T. Simultaneously determination method for 36 pesticides in aquatic environment and its application [D]. Xiamen: Xiamen University, 2008: 70-71 (in Chinese)
[12] Mohanty S R, Bharati K, Moorthy B T S, et al. Effect of the herbicide butachlor on methane emission and ebullition flux from a direct-seeded flooded rice field [J]. Biology and Fertility of Soils, 2001, 33(3): 175-180
[13] Abigail M E A, Samuel S M, Ramalingam C. Addressing the environmental impacts of butachlor and the available remediation strategies: A systematic review [J]. International Journal of Environmental Science and Technology, 2015, 12(12): 4025-4036
[14] Chen C, Wang Y H, Zhao X P, et al. Comparative and combined acute toxicity of butachlor, imidacloprid and chlorpyrifos on earthworm, Eisenia fetida [J]. Chemosphere, 2014, 100: 111-115
[15] He H Z, Yu J, Chen G K, et al. Acute toxicity of butachlor and atrazine to freshwater green alga Scenedesmus obliquus and cladoceran Daphnia carinata [J]. Ecotoxicology and Environmental Safety, 2012, 80: 91-96
[16] Geng B R, Yao D, Xue Q Q. Acute toxicity of the pesticide dichlorvos and the herbicide butachlor to tadpoles of four anuran species [J]. Bulletin of Environmental Contamination and Toxicology, 2005, 75(2): 343-349
[17] Liu W Y, Wang C Y, Wang T S, et al. Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (Fejervarya limnocharis) in subtropical Taiwan [J]. Ecotoxicology, 2011, 20(2): 377-384
[18] 张彬彬, 傅荣恕. 乙草胺对生物的急性毒理研究[J]. 滨州医学院学报, 2008, 31(1): 36-37, 39
Zhang B B, Fu R S. Toxicity of acetochlor on loach [J]. Journal of Binzhou Medical University, 2008, 31(1): 36-37, 39 (in Chinese)
[19] Tu W Q, Niu L L, Liu W P, et al. Embryonic exposure to butachlor in zebrafish (Danio rerio): Endocrine disruption, developmental toxicity and immunotoxicity [J]. Ecotoxicology and Environmental Safety, 2013, 89: 189-195
[20] Chang J H, Liu S Y, Zhou S L, et al. Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio) [J]. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 2013, 65(1-2): 205-209
[21] Ateeq B, Farah M A, Ahmad W. Evidence of apoptotic effects of 2,4-D and butachlor on walking catfish, Clarias batrachus, by transmission electron microscopy and DNA degradation studies [J]. Life Sciences, 2006, 78(9): 977-986
[22] 李进寿, 罗芬, 阮少江, 等. 联苯菊酯暴露对雌性褐菖鲉卵巢发育的影响及其毒性机制[J]. 生态毒理学报, 2016, 11(6): 323-329
Li J S, Luo F, Ruan S J, et al. Bifenthrin exposure disrupts the development of ovary in female Sebastiscus marmoratus and the mechanism involved [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 323-329 (in Chinese)
[23] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248-254
[24] Sun L B, Zhang J L, Zuo Z H, et al. Influence of triphenyltin exposure on the hypothalamus-pituitary-gonad axis in male Sebastiscus marmoratus [J]. Aquatic Toxicology, 2011, 104(3-4): 263-269
[25] Sun L B, Zuo Z H, Luo H M, et al. Chronic exposure to phenanthrene influences the spermatogenesis of male Sebastiscus marmoratus: U-shaped effects and the reason for them [J]. Environmental Science &Technology, 2011, 45(23): 10212-10218
[26] Li J S, Sun L B, Zuo Z H, et al. Exposure to paclobutrazol disrupts spermatogenesis in male Sebastiscus marmoratus [J]. Aquatic Toxicology, 2012, 122-123: 120-124
[27] Li J S, Luo F, Liu L Y, et al. Exposure to bifenthrin disrupts the development of testis in male Sebastiscus marmoratus [J]. Acta Oceanologica Sinica, 2017, 36(2): 57-61
[28] Xiang Q Q, Xu B F, Ding Y L, et al. Oxidative stress response induced by butachlor in zebrafish embryo/larvae: The protective effect of vitamin C [J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(2): 208-215
[29] Forsgren K L, Riar N, Schlenk D. The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions [J]. General and Comparative Endocrinology, 2013, 186: 101-107
[30] Jégou B. The Sertoli cell in vivo and in vitro [J]. Cell Biology and Toxicology, 1992, 8(3): 49-54
[31] Rasmussen T H, Teh S J, Bjerregaard P, et al. Anti-estrogen prevents xenoestrogen-induced testicular pathology of eelpout (Zoarces viviparus) [J]. Aquatic Toxicology, 2005, 72(3): 177-194
[32] Sharpe R M, McKinnell C, Kivlin C, et al. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood [J]. Reproduction, 2003, 125(6): 769-784
[33] Schwartzman R A, Cidlowski J A. Apoptosis: The biochemistry and molecular biology of programmed cell death [J]. Endocrine Reviews, 1993, 14(2): 133-151
[34] Steller H. Mechanisms and genes of cellular suicide [J]. Science, 1995, 267(5203): 1445-1449
[35] 孙琦, 范咏梅, 赖柯华, 等. 呋虫胺对斑马鱼胚胎-幼鱼生长发育及细胞凋亡的影响[J]. 生态毒理学报, 2016, 11(3): 356-364
Sun Q, Fan Y M, Lai K H, et al. Effects of dinotefuran on the embryonic and larvae development and apoptosis in zebrafish (Danio rerio) [J]. Asian Journal of Ecotoxicology, 2016, 11(3): 356-364 (in Chinese)
[36] Cohen G M. Caspases: The executioners of apoptosis [J]. The Biochemical Journal, 1997, 326(Pt 1): 1-16
[37] Migliarini B, Campisi A M, Maradonna F, et al. Effects of cadmium exposure on testis apoptosis in the marine teleost Gobius niger [J]. General and Comparative Endocrinology, 2005, 142(1-2): 241-247
[38] Weber L P, Kiparissis Y, Hwang G S, et al. Increased cellular apoptosis after chronic aqueous exposure to nonylphenol and quercetin in adult medaka (Oryzias latipes) [J]. Comparative Biochemistry and Physiology Toxicology &Pharmacology, 2002, 131(1): 51-59
[39] Patel M R, Scheffler B E, Wang L, et al. Effects of benzo(a)pyrene exposure on killifish (Fundulus heteroclitus) aromatase activities and mRNA [J]. Aquatic Toxicology, 2006, 77(3): 267-278
[40] Wu Y S, He Z, Zhang L H, et al. Ontogeny of immunoreactive LH and Fsh cells in relation to early ovarian differentiation and development in protogynous hermaphroditic ricefield eel Monopterus albus [J]. Biology of Reproduction, 2012, 86(3): 93
[41] Shimizu A, Hamaguchi M, Ito H, et al. Appearances and chronological changes of mummichog Fundulus heteroclitus FSH cells and LH cells during ontogeny, sexual differentiation, and gonadal development [J]. General and Comparative Endocrinology, 2008, 156(2): 312-322
[42] Miranda L A, Strüssmann C A, Somoza G M. Effects of light and temperature conditions on the expression of GnRH and GtH genes and levels of plasma steroids in Odontesthes bonariensis females [J]. Fish Physiology and Biochemistry, 2009, 35(1): 101-108