八宝景天热解动力学特征及其对六价铬的吸附

雷建森, 吴梦茹, 李亚茹, 孙雅雅, 丁琳洁, 张鑫, 陈治华. 八宝景天热解动力学特征及其对六价铬的吸附[J]. 环境化学, 2020, (10): 2907-2920. doi: 10.7524/j.issn.0254-6108.2019102104
引用本文: 雷建森, 吴梦茹, 李亚茹, 孙雅雅, 丁琳洁, 张鑫, 陈治华. 八宝景天热解动力学特征及其对六价铬的吸附[J]. 环境化学, 2020, (10): 2907-2920. doi: 10.7524/j.issn.0254-6108.2019102104
LEI Jiansen, WU Mengru, LI Yaru, SUN Yaya, DING Linjie, ZHANG Xin, CHEN Zhihua. Kinetic of Hylotelephium erythrostictum pyrolysis and Cr(Ⅵ) adsorption by the derived biochar[J]. Environmental Chemistry, 2020, (10): 2907-2920. doi: 10.7524/j.issn.0254-6108.2019102104
Citation: LEI Jiansen, WU Mengru, LI Yaru, SUN Yaya, DING Linjie, ZHANG Xin, CHEN Zhihua. Kinetic of Hylotelephium erythrostictum pyrolysis and Cr(Ⅵ) adsorption by the derived biochar[J]. Environmental Chemistry, 2020, (10): 2907-2920. doi: 10.7524/j.issn.0254-6108.2019102104

八宝景天热解动力学特征及其对六价铬的吸附

    通讯作者: 陈治华, E-mail: chenzhihua@htu.edu.cn
  • 基金项目:

    国家自然科学基金(51604099,41702269)和河南省高等学校重点科研项目计划(18B610002)资助.

Kinetic of Hylotelephium erythrostictum pyrolysis and Cr(Ⅵ) adsorption by the derived biochar

    Corresponding author: CHEN Zhihua, chenzhihua@htu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(51604099, 41702269) and the Key Research Projects of Education Department in Henan Province(18B610002).
  • 摘要: 植物修复是治理重金属复合污染土壤的一种高效可行的修复方法,八宝景天近年来被应用于植物修复,修复土壤的同时又能美化环境.但修复后的八宝景天含有污染物,需要对其进行有效处理防止二次污染.将八宝景天进行热解制备生物炭,并用于污染物吸附是一种可行的方法.本文考察八宝景天的热解动力学及其生物炭对Cr(Ⅵ)的吸附.由于活化能的波动较大,动力学补偿效应线性关系较差,所以单步反应不能描述其热解速率.热解动力学的复杂性采用基于等转化率的离散分布活化能模型考察,结果显示,模型可以很好地与实验数据拟合;热解液化作用阶段活化能为274 kJ·mol-1;转化率0.75后热解行为主要为生物炭的二次裂解,占28.8%的权重.生物炭去除Cr(Ⅵ)包括吸附和还原过程,其中吸附速率符合伪二级反应动力学模型.Cr(Ⅵ)去除率随热解温度的升高而降低,400℃下热解的生物炭去除率最高,其等温吸附均符合Langmuir和Freundlich模型,最大吸附量为220.8 mg·g-1.
  • 加载中
  • [1] 中国科学院中国植物志编辑委员会.中国植物志第 34卷[M]. 北京:科学出版社,1984:72 Editorial Committee of flora of China, Chinese Academy of Sciences. Flora of China Vol. 34[M]. Beijing:Science Press, 1984:72

    (in Chinese).

    [2] 王静, 刘如. 植物修复重金属污染土壤的研究进展[J]. 安徽农学通报, 2019, 25(16):110-112.

    WANG J, LIU R. Advances in phytoremediation of heavy metal contaminated soils[J]. Anhui Agricultural Science Bulletin, 2019, 25(16):110-112(in Chinese).

    [3] 林爱军. 重金属污染土壤可持续原位修复:生物质基修复材料研究新进展[J]. 环境工程学报,2019, 13(9):2025-2026.

    LIN A J. In-situ remediation of heavy metal contaminated soils:New progress of biomass derived fixation materials[J]. Chinese Journal of Environmental Engineering, 2019, 13(9):2025-2026(in Chinese).

    [4] 程立娟, 周启星. 野生观赏植物长药八宝对石油烃污染土壤的修复研究[J]. 环境科学学报, 2014, 34(4):980-986.

    CHENG L J, ZHOU Q X. Study on the remediation of petroleum hydrocarbon contaminated soil by the wild ornamental plant Babao[J]. Journal of Environmental Science, 2014, 34(4):980-986(in Chinese).

    [5] 殷志遥, 和君强, 秦华, 等. 覆膜对伴矿景天生长和吸镉动态影响研究[J]. 农业环境科学学报, 2019, 38(5):1043-1050.

    YIN Z Y, HE J Q, QIN H, et al. Effect of film mulching on plant growth and cadmium uptake by Sedum plumbizincicola[J]. Journal of Agro-Environment Science, 2019, 38(5):1043-1050(in Chinese).

    [6] 张洁, 尹德洁, 关海燕, 等. 景天属植物研究综述[J]. 浙江农林大学学报, 2018, 35(6):1166-1176.

    ZHANG J, YIN D J, GUAN H Y, et al. An overview of Sedum spp. Research[J]. Journal of Zhejiang A&F University, 2018, 35(6):1166-1176(in Chinese).

    [7] 王珊, 白瑞琴. 重金属镉对两种景天的生长和积累研究[J]. 北方园艺, 2016(7):60-65. WANG S, BAI R Q. Study on the growth and accumulation of heavy metal cadmium in two kinds of Sedum[J]. Northern horticulture, 2016

    (7):60-65(in Chinese).

    [8] DASTYAR W, RAHEEM A, HE J, et al. Biofuel production using thermochemical conversion of heavy metal-contaminated biomass (HMCB) harvested from phytoextraction process[J]. Chemical Engineering Journal, 2019, 358:759-785.
    [9] WANG S R, DAI G X, YANG H P, et al. Lignocellulosic biomass pyrolysis mechanism:A state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62:33-86.
    [10] 姬文心, 曾鸣, 丛宏斌, 等. 生物质热解反应装置研究现状及展望[J]. 生物质化学工程, 2019, 53(3):46-58.

    JI W X, ZENG M, CONG H B, et al. Research status and prospects of biomass pyrolysis reactor[J]. Biomass Chemical Engineering. 2019, 53(3):46-58(in Chinese).

    [11] 刘标, 陈应泉, 何涛, 等. 农作物秸秆热解多联产技术的应用[J]. 农业工程学报, 2013, 29(16):213-219.

    LIU B, CHEN Y Q, HE T, et al. Application of cogeneration technology of gas-liquid-solid products pyrolyzed from crop straw[J]. Transactions of the Chinese Society of Agricultural Engineering. 2013, 29(16):213-219(in Chinese).

    [12] CAI W F, LIU R H, HE Y F, et al. Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor[J]. Fuel Processing Technology, 2018, 171:308-317.
    [13] CHAUDHARI S T, DALAI A K, BAKHSHI N N. Production of hydrogen and/or syngas (H2+CO) via steam gasification of biomass-derived chars[J]. Energy & Fuels, 2003, 17(4):1062-1067.
    [14] WU C F, BUDARIN V L, WANG M H, et al. CO2 gasification of bio-char derived from conventional and microwave pyrolysis[J]. Applied Energy, 2015, 157:533-539.
    [15] LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials:Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115(22):12251-12285.
    [16] 吴晴雯, 孟梁, 张志豪, 等. 芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性[J]. 环境化学, 2015, 34(9):1703-1709.

    WU Q W, MENG L, ZHANG Z H, et al. Adsorption behaviors of Ni2+ onto reed straw biochar in the aquatic solutions[J]. Environment Chemistry,2015, 34(9):1703-1709(in Chinese).

    [17] 郭素华, 许中坚, 李方文, 等. 生物炭对水中Pb(Ⅱ)和Zn(Ⅱ)的吸附特征[J]. 环境工程学报, 2015, 9(7):3215-3222.

    GUO S H, XU Z J, LI F Z, et al. Adsorption of Pb(Ⅱ), Zn(Ⅱ) from aqueous solution by biochars[J]. Chinese Journal of Environmental Engineering, 2015, 9(7):3215-3222(in Chinese).

    [18] 宋婷婷, 赖欣, 王知文, 等. 不同原料生物炭对铵态氮的吸附性能研究[J]. 农业环境科学学报, 2018, 37(3):576-584.

    SONG T T, LAI X, WANG Z W, et al. Adsorption of ammonium nitrogen by biochars produced from different biomasses[J]. Journal of Agro-Environment Science, 2018, 37(3):576-584(in Chinese).

    [19] 谢超然, 王兆炜, 朱俊民, 等. 核桃青皮生物炭对重金属铅, 铜的吸附特性研究[J]. 环境科学学报, 2016, 36(4):1190-1198.

    XIE C R, WANG Z W, ZHU J M, et al. Adsorption of lead and copper from aqueous solutions on biochar produced from walnut green husk[J]. Acta Scientiae Circumstantiae, 2016,36(4):1190-1198(in Chinese).

    [20] 徐新宇, 杨家宽, 宋健, 等. 调理脱水污泥的热解特性及动力学分析[J]. 环境化学, 2016, 35(5):972-981.

    XU X Y, YANG J K, SONG J, et al. Pyrolysis characteristics and kinetics analysis of conditioned dewatered sewage sludge[J]. Environmental Chemistry, 2016, 35(5):972-981(in Chinese).

    [21] BURNHAM A K, BRAUN R L. Global kinetic analysis of complex materials[J]. Energy & Fuels, 1999, 13(1):1-22.
    [22] BRIGHENTI M, GRIGIANTE M, ANTOLINI D, et al. An innovative kinetic model dedicated to mild degradation (torrefaction) of biomasses[J]. Applied Energy, 2017, 206:475-486.
    [23] SCOTT S A, DENNIS J S, DAVIDSON J F, et al. An algorithm for determining the kinetics of devolatilisation of complex solid fuels from thermogravimetric experiments[J]. Chemical Engineering Science, 2006, 61(8):2339-2348.
    [24] HU Z Q, CHEN Z H, LI G, et al. Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis[J]. Bioresource Technology, 2015, 194:364-372.
    [25] 程世庆, 尚琳琳, 张海清. 生物质的热解过程及其动力学规律[J]. 煤炭学报, 2006, 31(4):501-505.

    CHENG S Q, SHANG L L, ZHANG H Q. The pyrolysis characteristics of biomass and its dynamics law[J]. Journal of China Coal Society, 2006, 31(4):501-505(in Chinese).

    [26] 王贵军, 罗永浩, 邓剑, 等. 生物质的低温热解预处理实验研究[J]. 科学通报, 2010, 55(36):3451-3457.

    WANG G J, LUO Y H, DENG J, et al. Pretreatment of biomass by torrefaction[J]. Chinese Science Bullet, 2010, 55(36):3451-3457(in Chinese).

    [27] 饶雨舟, 卢志民, 简杰, 等. 生物质烘焙技术的研究和应用进展[J].化学与生物工程, 2017, 34(3):7-10.

    RAO Y Z, LU Z M, JIAN J, et al. Progresson research and application of biomass torrefaction technology[J]. Chemistry & Bioengineering, 2017, 34(3):7-10(in Chinese).

    [28] 张旭, 孙姣, 范赢, 等. 芦苇秆热解特性及动力学分析[J]. 生物质化学工程, 2019, 53(4):9-18.

    ZHANG X, SUN J, FAN Y, et al. Pyrolysis characteristics and kinetic analysis of reed stalk[J].Biomass Chemical Engineering, 2019, 53(4):9-18(in Chinese).

    [29] 杨海平, 陈汉平, 晏蓉, 等. 油棕废弃物热解的TG-FTIR分析[J]. 燃料化学学报, 2006, 34(3):309-314.

    YANG H P, CHEN H P, YAN R, et al. TG-FTIR analysis of oil palm waste pyrolysis[J]. Journal of Fuel Chemistry, 2006, 34(3):309-314(in Chinese).

    [30] WESTMORELAND P, FAHEY P. Dehydration and dehydrogenation kinetics of OH groups in biomass pyrolysis[J]. Chemical Engineering Transactions, 2016, 50:73-78.
    [31] HU Z, CHEN Z, LI G, et al. Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis[J]. Bioresource Technology, 2015, 194:364-372.
    [32] RATH J, WOLFINGER M G, STEINER G, et al. Heat of wood pyrolysis[J]. Fuel, 2003, 82(1):81-91.
    [33] VARHEGYI G, ANTAL M J, JAKAB E, et al. Kinetic modeling of biomass pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 1997, 42(1):73-87.
    [34] VARHEGYI G. Empirical models with constant and variable activation energy for biomass pyrolysis[J]. Energy & Fuels, 2019, 33(3):2348-2358.
    [35] MathWorks, Inc. Curve fitting toolbox 1:User's guide[M]. Natick, Massachusetts, USA, 2006.
    [36] VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2):1-19.
    [37] AHMADM, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014, 99:19-33.
    [38] ZHANG X, FU W J, YIN Y X, et al. Adsorption-reduction removal of Cr (Ⅵ) by tobacco petiole pyrolytic biochar:Batch experiment, kinetic and mechanism studies[J]. Bioresource Technology, 2018, 268:149-157.
    [39] TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions:A critical review[J]. Water Research, 2017, 120:88-116.
    [40] ZHOU L, LIU Y G, LIU S B, et al. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures[J]. Bioresource Technology, 2016, 218:351-359.
    [41] BURKS T, AVILA M, AKHTAR F, et al. Studies on the adsorption of chromium (Ⅵ) onto 3-mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles[J]. Journal of Colloid and Interface Science, 2014, 425:36-43.
    [42] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465.
    [43] ALJEBOREE A M, ALSHIRIFI A N, ALKAIM A F. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon[J]. Arabian Journal of Chemistry, 2017, 10:S3381-S3393.
    [44] 刘进阁, 周震峰. 豆角秸秆生物炭对水中Cr(Ⅵ)吸附性能研究[J]. 环境科学与管理, 2013, 38(8):161-165.

    LIU J G, ZHOU Z F. Research on adsorptive performance of Cr(Ⅵ) in water on bean straw bio-char[J]. Environmental Science and Management, 2013, 38(8):161-165(in Chinese).

    [45] CHEN T, ZHOU Z Y, XU S, et al. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J]. Bioresource Technology, 2015, 190:388-394.
    [46] 刘延湘, 黄彪, 张丽. 花生壳生物炭对水中重金属Cr6+,Cu2+的吸附研究[J]. 科学技术与工程, 2017, 17(13):81-85.

    LIU Y X, HUANG B, ZHANG L. Adsorption of heavy metal Cr6+ and Cu2+ in aqueous solutions by peanut shell biochar[J]. Science Technology and Engineering, 2017, 17(13):81-85(in Chinese).

    [47] 陈友媛, 惠红霞, 卢爽, 等. 浒苔生物炭的特征及其对Cr(Ⅵ)的吸附特点和吸附机制[J]. 环境科学, 2017, 38(9):3953-3961.

    CHEN Y Y, HUI H X, LU S, et al. Characteristics of enteromorpha prolifera biochars and their adsorption performance and mechanisms for Cr(Ⅵ)[J]. Environmental Science, 2017, 38(9):3953-3961(in Chinese).

    [48] 赖长鸿, 颜增光, 廖博文, 等. 皇竹草生物炭的结构特征及其对Cr(Ⅵ)的吸附性能[J]. 农业环境科学学报, 2016, 35(6):1188-1193.

    LAI C H, YAN Z G, LIAO B W, et al. Structural feature and chromium(Ⅵ) adsorption of biochar derived from Pennisetum hydridum[J]. Journal of Agro-Environment Science, 2016, 35(6):1188-1193(in Chinese).

  • 加载中
计量
  • 文章访问数:  1920
  • HTML全文浏览数:  1920
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-21
雷建森, 吴梦茹, 李亚茹, 孙雅雅, 丁琳洁, 张鑫, 陈治华. 八宝景天热解动力学特征及其对六价铬的吸附[J]. 环境化学, 2020, (10): 2907-2920. doi: 10.7524/j.issn.0254-6108.2019102104
引用本文: 雷建森, 吴梦茹, 李亚茹, 孙雅雅, 丁琳洁, 张鑫, 陈治华. 八宝景天热解动力学特征及其对六价铬的吸附[J]. 环境化学, 2020, (10): 2907-2920. doi: 10.7524/j.issn.0254-6108.2019102104
LEI Jiansen, WU Mengru, LI Yaru, SUN Yaya, DING Linjie, ZHANG Xin, CHEN Zhihua. Kinetic of Hylotelephium erythrostictum pyrolysis and Cr(Ⅵ) adsorption by the derived biochar[J]. Environmental Chemistry, 2020, (10): 2907-2920. doi: 10.7524/j.issn.0254-6108.2019102104
Citation: LEI Jiansen, WU Mengru, LI Yaru, SUN Yaya, DING Linjie, ZHANG Xin, CHEN Zhihua. Kinetic of Hylotelephium erythrostictum pyrolysis and Cr(Ⅵ) adsorption by the derived biochar[J]. Environmental Chemistry, 2020, (10): 2907-2920. doi: 10.7524/j.issn.0254-6108.2019102104

八宝景天热解动力学特征及其对六价铬的吸附

    通讯作者: 陈治华, E-mail: chenzhihua@htu.edu.cn
  • 1. 河南师范大学环境学院, 新乡, 453007;
  • 2. 黄淮水环境与污染防治教育部重点实验室, 新乡, 453007
基金项目:

国家自然科学基金(51604099,41702269)和河南省高等学校重点科研项目计划(18B610002)资助.

摘要: 植物修复是治理重金属复合污染土壤的一种高效可行的修复方法,八宝景天近年来被应用于植物修复,修复土壤的同时又能美化环境.但修复后的八宝景天含有污染物,需要对其进行有效处理防止二次污染.将八宝景天进行热解制备生物炭,并用于污染物吸附是一种可行的方法.本文考察八宝景天的热解动力学及其生物炭对Cr(Ⅵ)的吸附.由于活化能的波动较大,动力学补偿效应线性关系较差,所以单步反应不能描述其热解速率.热解动力学的复杂性采用基于等转化率的离散分布活化能模型考察,结果显示,模型可以很好地与实验数据拟合;热解液化作用阶段活化能为274 kJ·mol-1;转化率0.75后热解行为主要为生物炭的二次裂解,占28.8%的权重.生物炭去除Cr(Ⅵ)包括吸附和还原过程,其中吸附速率符合伪二级反应动力学模型.Cr(Ⅵ)去除率随热解温度的升高而降低,400℃下热解的生物炭去除率最高,其等温吸附均符合Langmuir和Freundlich模型,最大吸附量为220.8 mg·g-1.

English Abstract

参考文献 (48)

返回顶部

目录

/

返回文章
返回