八宝景天热解动力学特征及其对六价铬的吸附
Kinetic of Hylotelephium erythrostictum pyrolysis and Cr(Ⅵ) adsorption by the derived biochar
-
摘要: 植物修复是治理重金属复合污染土壤的一种高效可行的修复方法,八宝景天近年来被应用于植物修复,修复土壤的同时又能美化环境.但修复后的八宝景天含有污染物,需要对其进行有效处理防止二次污染.将八宝景天进行热解制备生物炭,并用于污染物吸附是一种可行的方法.本文考察八宝景天的热解动力学及其生物炭对Cr(Ⅵ)的吸附.由于活化能的波动较大,动力学补偿效应线性关系较差,所以单步反应不能描述其热解速率.热解动力学的复杂性采用基于等转化率的离散分布活化能模型考察,结果显示,模型可以很好地与实验数据拟合;热解液化作用阶段活化能为274 kJ·mol-1;转化率0.75后热解行为主要为生物炭的二次裂解,占28.8%的权重.生物炭去除Cr(Ⅵ)包括吸附和还原过程,其中吸附速率符合伪二级反应动力学模型.Cr(Ⅵ)去除率随热解温度的升高而降低,400℃下热解的生物炭去除率最高,其等温吸附均符合Langmuir和Freundlich模型,最大吸附量为220.8 mg·g-1.Abstract: Phytoremediation is an efficient and feasible remediation method for the treatment of soil contaminated by heavy metals. Taking the hylotelephium erythrostictum (HE) as a typical example, it has been widely used in phytoremediation in recent years, which can repair the soil and beautify the environment simultaneously. However, the HE used for soil remediation still contains pollutants, which needs to be effectively treated to prevent secondary pollution. Therefore, it is a feasible method to prepare biochar by pyrolysis of HE and use it for pollutant adsorption. In this paper, the pyrolysis kinetics of HE and its derived biochar adsorption performance on Cr(Ⅵ) were investigated in detail. The results showed that the single step reaction could not describe its pyrolysis rate due to the large fluctuation of activation energy and the poor linear relationship of kinetic compensation effect. Afterwards, the complexity of pyrolysis kinetics was investigated by using the discrete distributed activation energy model based on equal conversion rate. The results demonstrated that this model can fit well with the experimental data, and the activation energy of pyrolysis liquefaction stage was 274 kJ·mol-1. Besides, the pyrolysis behavior after 0.75 conversion rate was mainly the secondary pyrolysis of biochar, accounting for 28.8% of the weight. The removal of Cr(Ⅵ) by biochar prepared by pyrolysis of HE included adsorption and reduction processes, in which the adsorption rate accorded with the pseudo-second-order reaction kinetic model. This resultant biochar on the removal rate of Cr (Ⅵ) along with the rise of pyrolysis temperature was reduced, and the corresponding value reached the highest at 400 ℃. Finally, its isothermal adsorption conformed to both Langmuir and Freundlich models, with a maximum adsorption capacity of 220.8 mg·g-1.
-
Key words:
- phytoremediation /
- biomass pyrplysis /
- Hylotelephium erythrostictum /
- kinetic /
- hexavalent chromium /
- adsorption
-
-
[1] 中国科学院中国植物志编辑委员会.中国植物志第 34卷[M]. 北京:科学出版社,1984:72 Editorial Committee of flora of China, Chinese Academy of Sciences. Flora of China Vol. 34[M]. Beijing:Science Press, 1984:72 (in Chinese).
[2] 王静, 刘如. 植物修复重金属污染土壤的研究进展[J]. 安徽农学通报, 2019, 25(16):110-112. WANG J, LIU R. Advances in phytoremediation of heavy metal contaminated soils[J]. Anhui Agricultural Science Bulletin, 2019, 25(16):110-112(in Chinese).
[3] 林爱军. 重金属污染土壤可持续原位修复:生物质基修复材料研究新进展[J]. 环境工程学报,2019, 13(9):2025-2026. LIN A J. In-situ remediation of heavy metal contaminated soils:New progress of biomass derived fixation materials[J]. Chinese Journal of Environmental Engineering, 2019, 13(9):2025-2026(in Chinese).
[4] 程立娟, 周启星. 野生观赏植物长药八宝对石油烃污染土壤的修复研究[J]. 环境科学学报, 2014, 34(4):980-986. CHENG L J, ZHOU Q X. Study on the remediation of petroleum hydrocarbon contaminated soil by the wild ornamental plant Babao[J]. Journal of Environmental Science, 2014, 34(4):980-986(in Chinese).
[5] 殷志遥, 和君强, 秦华, 等. 覆膜对伴矿景天生长和吸镉动态影响研究[J]. 农业环境科学学报, 2019, 38(5):1043-1050. YIN Z Y, HE J Q, QIN H, et al. Effect of film mulching on plant growth and cadmium uptake by Sedum plumbizincicola[J]. Journal of Agro-Environment Science, 2019, 38(5):1043-1050(in Chinese).
[6] 张洁, 尹德洁, 关海燕, 等. 景天属植物研究综述[J]. 浙江农林大学学报, 2018, 35(6):1166-1176. ZHANG J, YIN D J, GUAN H Y, et al. An overview of Sedum spp. Research[J]. Journal of Zhejiang A&F University, 2018, 35(6):1166-1176(in Chinese).
[7] 王珊, 白瑞琴. 重金属镉对两种景天的生长和积累研究[J]. 北方园艺, 2016(7):60-65. WANG S, BAI R Q. Study on the growth and accumulation of heavy metal cadmium in two kinds of Sedum[J]. Northern horticulture, 2016 (7):60-65(in Chinese).
[8] DASTYAR W, RAHEEM A, HE J, et al. Biofuel production using thermochemical conversion of heavy metal-contaminated biomass (HMCB) harvested from phytoextraction process[J]. Chemical Engineering Journal, 2019, 358:759-785. [9] WANG S R, DAI G X, YANG H P, et al. Lignocellulosic biomass pyrolysis mechanism:A state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62:33-86. [10] 姬文心, 曾鸣, 丛宏斌, 等. 生物质热解反应装置研究现状及展望[J]. 生物质化学工程, 2019, 53(3):46-58. JI W X, ZENG M, CONG H B, et al. Research status and prospects of biomass pyrolysis reactor[J]. Biomass Chemical Engineering. 2019, 53(3):46-58(in Chinese).
[11] 刘标, 陈应泉, 何涛, 等. 农作物秸秆热解多联产技术的应用[J]. 农业工程学报, 2013, 29(16):213-219. LIU B, CHEN Y Q, HE T, et al. Application of cogeneration technology of gas-liquid-solid products pyrolyzed from crop straw[J]. Transactions of the Chinese Society of Agricultural Engineering. 2013, 29(16):213-219(in Chinese).
[12] CAI W F, LIU R H, HE Y F, et al. Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor[J]. Fuel Processing Technology, 2018, 171:308-317. [13] CHAUDHARI S T, DALAI A K, BAKHSHI N N. Production of hydrogen and/or syngas (H2+CO) via steam gasification of biomass-derived chars[J]. Energy & Fuels, 2003, 17(4):1062-1067. [14] WU C F, BUDARIN V L, WANG M H, et al. CO2 gasification of bio-char derived from conventional and microwave pyrolysis[J]. Applied Energy, 2015, 157:533-539. [15] LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials:Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115(22):12251-12285. [16] 吴晴雯, 孟梁, 张志豪, 等. 芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性[J]. 环境化学, 2015, 34(9):1703-1709. WU Q W, MENG L, ZHANG Z H, et al. Adsorption behaviors of Ni2+ onto reed straw biochar in the aquatic solutions[J]. Environment Chemistry,2015, 34(9):1703-1709(in Chinese).
[17] 郭素华, 许中坚, 李方文, 等. 生物炭对水中Pb(Ⅱ)和Zn(Ⅱ)的吸附特征[J]. 环境工程学报, 2015, 9(7):3215-3222. GUO S H, XU Z J, LI F Z, et al. Adsorption of Pb(Ⅱ), Zn(Ⅱ) from aqueous solution by biochars[J]. Chinese Journal of Environmental Engineering, 2015, 9(7):3215-3222(in Chinese).
[18] 宋婷婷, 赖欣, 王知文, 等. 不同原料生物炭对铵态氮的吸附性能研究[J]. 农业环境科学学报, 2018, 37(3):576-584. SONG T T, LAI X, WANG Z W, et al. Adsorption of ammonium nitrogen by biochars produced from different biomasses[J]. Journal of Agro-Environment Science, 2018, 37(3):576-584(in Chinese).
[19] 谢超然, 王兆炜, 朱俊民, 等. 核桃青皮生物炭对重金属铅, 铜的吸附特性研究[J]. 环境科学学报, 2016, 36(4):1190-1198. XIE C R, WANG Z W, ZHU J M, et al. Adsorption of lead and copper from aqueous solutions on biochar produced from walnut green husk[J]. Acta Scientiae Circumstantiae, 2016,36(4):1190-1198(in Chinese).
[20] 徐新宇, 杨家宽, 宋健, 等. 调理脱水污泥的热解特性及动力学分析[J]. 环境化学, 2016, 35(5):972-981. XU X Y, YANG J K, SONG J, et al. Pyrolysis characteristics and kinetics analysis of conditioned dewatered sewage sludge[J]. Environmental Chemistry, 2016, 35(5):972-981(in Chinese).
[21] BURNHAM A K, BRAUN R L. Global kinetic analysis of complex materials[J]. Energy & Fuels, 1999, 13(1):1-22. [22] BRIGHENTI M, GRIGIANTE M, ANTOLINI D, et al. An innovative kinetic model dedicated to mild degradation (torrefaction) of biomasses[J]. Applied Energy, 2017, 206:475-486. [23] SCOTT S A, DENNIS J S, DAVIDSON J F, et al. An algorithm for determining the kinetics of devolatilisation of complex solid fuels from thermogravimetric experiments[J]. Chemical Engineering Science, 2006, 61(8):2339-2348. [24] HU Z Q, CHEN Z H, LI G, et al. Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis[J]. Bioresource Technology, 2015, 194:364-372. [25] 程世庆, 尚琳琳, 张海清. 生物质的热解过程及其动力学规律[J]. 煤炭学报, 2006, 31(4):501-505. CHENG S Q, SHANG L L, ZHANG H Q. The pyrolysis characteristics of biomass and its dynamics law[J]. Journal of China Coal Society, 2006, 31(4):501-505(in Chinese).
[26] 王贵军, 罗永浩, 邓剑, 等. 生物质的低温热解预处理实验研究[J]. 科学通报, 2010, 55(36):3451-3457. WANG G J, LUO Y H, DENG J, et al. Pretreatment of biomass by torrefaction[J]. Chinese Science Bullet, 2010, 55(36):3451-3457(in Chinese).
[27] 饶雨舟, 卢志民, 简杰, 等. 生物质烘焙技术的研究和应用进展[J].化学与生物工程, 2017, 34(3):7-10. RAO Y Z, LU Z M, JIAN J, et al. Progresson research and application of biomass torrefaction technology[J]. Chemistry & Bioengineering, 2017, 34(3):7-10(in Chinese).
[28] 张旭, 孙姣, 范赢, 等. 芦苇秆热解特性及动力学分析[J]. 生物质化学工程, 2019, 53(4):9-18. ZHANG X, SUN J, FAN Y, et al. Pyrolysis characteristics and kinetic analysis of reed stalk[J].Biomass Chemical Engineering, 2019, 53(4):9-18(in Chinese).
[29] 杨海平, 陈汉平, 晏蓉, 等. 油棕废弃物热解的TG-FTIR分析[J]. 燃料化学学报, 2006, 34(3):309-314. YANG H P, CHEN H P, YAN R, et al. TG-FTIR analysis of oil palm waste pyrolysis[J]. Journal of Fuel Chemistry, 2006, 34(3):309-314(in Chinese).
[30] WESTMORELAND P, FAHEY P. Dehydration and dehydrogenation kinetics of OH groups in biomass pyrolysis[J]. Chemical Engineering Transactions, 2016, 50:73-78. [31] HU Z, CHEN Z, LI G, et al. Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis[J]. Bioresource Technology, 2015, 194:364-372. [32] RATH J, WOLFINGER M G, STEINER G, et al. Heat of wood pyrolysis[J]. Fuel, 2003, 82(1):81-91. [33] VARHEGYI G, ANTAL M J, JAKAB E, et al. Kinetic modeling of biomass pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 1997, 42(1):73-87. [34] VARHEGYI G. Empirical models with constant and variable activation energy for biomass pyrolysis[J]. Energy & Fuels, 2019, 33(3):2348-2358. [35] MathWorks, Inc. Curve fitting toolbox 1:User's guide[M]. Natick, Massachusetts, USA, 2006. [36] VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2):1-19. [37] AHMADM, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014, 99:19-33. [38] ZHANG X, FU W J, YIN Y X, et al. Adsorption-reduction removal of Cr (Ⅵ) by tobacco petiole pyrolytic biochar:Batch experiment, kinetic and mechanism studies[J]. Bioresource Technology, 2018, 268:149-157. [39] TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions:A critical review[J]. Water Research, 2017, 120:88-116. [40] ZHOU L, LIU Y G, LIU S B, et al. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures[J]. Bioresource Technology, 2016, 218:351-359. [41] BURKS T, AVILA M, AKHTAR F, et al. Studies on the adsorption of chromium (Ⅵ) onto 3-mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles[J]. Journal of Colloid and Interface Science, 2014, 425:36-43. [42] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465. [43] ALJEBOREE A M, ALSHIRIFI A N, ALKAIM A F. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon[J]. Arabian Journal of Chemistry, 2017, 10:S3381-S3393. [44] 刘进阁, 周震峰. 豆角秸秆生物炭对水中Cr(Ⅵ)吸附性能研究[J]. 环境科学与管理, 2013, 38(8):161-165. LIU J G, ZHOU Z F. Research on adsorptive performance of Cr(Ⅵ) in water on bean straw bio-char[J]. Environmental Science and Management, 2013, 38(8):161-165(in Chinese).
[45] CHEN T, ZHOU Z Y, XU S, et al. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge[J]. Bioresource Technology, 2015, 190:388-394. [46] 刘延湘, 黄彪, 张丽. 花生壳生物炭对水中重金属Cr6+,Cu2+的吸附研究[J]. 科学技术与工程, 2017, 17(13):81-85. LIU Y X, HUANG B, ZHANG L. Adsorption of heavy metal Cr6+ and Cu2+ in aqueous solutions by peanut shell biochar[J]. Science Technology and Engineering, 2017, 17(13):81-85(in Chinese).
[47] 陈友媛, 惠红霞, 卢爽, 等. 浒苔生物炭的特征及其对Cr(Ⅵ)的吸附特点和吸附机制[J]. 环境科学, 2017, 38(9):3953-3961. CHEN Y Y, HUI H X, LU S, et al. Characteristics of enteromorpha prolifera biochars and their adsorption performance and mechanisms for Cr(Ⅵ)[J]. Environmental Science, 2017, 38(9):3953-3961(in Chinese).
[48] 赖长鸿, 颜增光, 廖博文, 等. 皇竹草生物炭的结构特征及其对Cr(Ⅵ)的吸附性能[J]. 农业环境科学学报, 2016, 35(6):1188-1193. LAI C H, YAN Z G, LIAO B W, et al. Structural feature and chromium(Ⅵ) adsorption of biochar derived from Pennisetum hydridum[J]. Journal of Agro-Environment Science, 2016, 35(6):1188-1193(in Chinese).
-

计量
- 文章访问数: 1920
- HTML全文浏览数: 1920
- PDF下载数: 99
- 施引文献: 0