碳纳米管对腐殖酸的吸附及其环境意义

方梦园, 赵天慧, 赵晓丽, 汤智, 武迪, 吴丰昌. 碳纳米管对腐殖酸的吸附及其环境意义[J]. 环境化学, 2020, (10): 2897-2906. doi: 10.7524/j.issn.0254-6108.2019111002
引用本文: 方梦园, 赵天慧, 赵晓丽, 汤智, 武迪, 吴丰昌. 碳纳米管对腐殖酸的吸附及其环境意义[J]. 环境化学, 2020, (10): 2897-2906. doi: 10.7524/j.issn.0254-6108.2019111002
FANG Mengyuan, ZHAO Tianhui, ZHAO Xiaoli, TANG Zhi, WU Di, WU Fengchang. Effect of humic acid on adsorption and sedimentation of carboxylic multi-walled carbon nanotubes with different diameters[J]. Environmental Chemistry, 2020, (10): 2897-2906. doi: 10.7524/j.issn.0254-6108.2019111002
Citation: FANG Mengyuan, ZHAO Tianhui, ZHAO Xiaoli, TANG Zhi, WU Di, WU Fengchang. Effect of humic acid on adsorption and sedimentation of carboxylic multi-walled carbon nanotubes with different diameters[J]. Environmental Chemistry, 2020, (10): 2897-2906. doi: 10.7524/j.issn.0254-6108.2019111002

碳纳米管对腐殖酸的吸附及其环境意义

    通讯作者: 汤智, E-mail: tzwork@hotmail.com
  • 基金项目:

    国家杰出青年科学基金(41925031)和国家自然科学基金(重大项目)(41991315)资助.

Effect of humic acid on adsorption and sedimentation of carboxylic multi-walled carbon nanotubes with different diameters

    Corresponding author: TANG Zhi, tzwork@hotmail.com
  • Fund Project: Supported by the National Science Fund for Distinguished Young Scholars(41925031) and National Natural Science Foundation of China (Major Program)(41991315).
  • 摘要: 纳米材料的水环境行为受自身理化性质和水体理化性质的影响.模拟实际水环境条件下不同纳米材料的吸附、聚沉行为对理解纳米材料的潜在生态风险具有重要意义.本研究以管径为4—6 nm(MWNTs-1)和10—20 nm(MWNTs-2)的羧基化多壁碳纳米管(MWNTs-COOH)为研究对象,系统研究了腐殖酸(HA)在MWNTs-COOH表面的吸附特征,并利用拉曼光谱对MWNTs-COOH吸附HA前后的变化进行了表征.结果表明,HA在MWNTs-1和MWNTs-2表面的最大吸附量分别为139.6 mg·g-1和101.2 mg·g-1,且随pH增加而降低;HA在MWNTs-COOH表面的吸附在前24 h增长较快,72 h达到吸附平衡;HA对MWNTs-COOH在溶液中的悬浮/沉降性能具有显著影响;管径更小、比表面积更大的MWNTs-1碳堆积结构更紊乱,缺陷更多,HA的吸附会覆盖MWNTs-COOH表面的缺陷.本研究有助于更好的掌握不同形貌纳米材料在实际水体环境中迁移、转化、归趋等环境行为,为科学评估纳米材料潜在生态危害提供理论依据.
  • 加载中
  • [1] KHANGDY, XIAO J L, KOCABAS C, et al. Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates[J]. Nano Letters, 2008,8(1):124-130.
    [2] SALVETAT J P, BONARD JM, THOMSONNH, et al. Mechanical properties of carbon nanotubes[J]. Applied Physics A, 1999, 69(3):255-260.
    [3] MAUTER M S, ELIMELECH M. Environmental applications of carbon-based nanomaterials[J]. Environmental Science & Technology, 2008, 42(16):5843-5859.
    [4] NIU C M, SICHEL E K, HOCH R, et al. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Applied Physics Letters, 1997, 70(11):1480-1482.
    [5] LIU Z, CHEN K, DAVIS C, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment[J]. Cancer Research, 2008, 68(16):6652-6660.
    [6] MESTL G, MAKSIMOVA N I, KELLER N, et al. Carbon nanofilaments in heterogeneous catalysis:An industrial application for new carbon materials?[J]. Angewandte Chemie(International Edition), 2001, 40(11):2066-2068.
    [7] GOTTSCHALK F, SONDERER T, SCHOLZ R W, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43(24):9216-9222.
    [8] ALLOY M M, ROBERTS A P. Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction[J]. Ecotoxicology & Environmental Safety, 2011, 74(7):1839-1843.
    [9] ZHU L, CHANG D W, DAI L M, et al. DNA damage induced by multiwalledcarbon nanotubes in mouse embryonicstem cells[J]. Nano Letters, 2007, 7(12):3592-3597.
    [10] LAMCW, JAMES J T, MCCLUSKEY R, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation[J]. Toxicological Sciences, 2003, 77(1):126-134.
    [11] BONCELS, KYZIOŁ-KOMOSIŃSKAJ, KRZYŻEWSKAI, et al. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems-A review[J]. Chemosphere, 2015, 136:211-221.
    [12] LIN D H, LI T T, YANG K, et al. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water:Effects of HA, MWNT and solution properties[J]. Journal of Hazardous Materials, 2012, 241/242:404-410.
    [13] SUMMERS R S, ROBERTS P V. Activated carbon adsorption of humic substances:I. Heterodisperse mixtures and desorption[J]. Journal of Colloid and Interface Science, 1988, 122(2):367-381.
    [14] MELO B A G D, MOTTA F L, SANTANA M H A. Humic acids:Structural properties and multiple functionalities for novel technological developments[J]. Materials Science and Engineering C, 2016, 62:967-974.
    [15] POLAK J, BARTOSZEK M, SUŁKOWSKIW W. Comparison of some spectroscopic and physicochemical properties of humic acids extracted from sewage sludge and bottom sediments[J]. Journal of Molecular Structure, 2009, 924-926:309-312.
    [16] WANG F, YAO J, CHEN H L, et al. Sorption of humic acid to functionalized multi-walled carbon nanotubes[J]. Environmental Pollution, 2013, 180:1-6.
    [17] HYUNG H, KIM J H. Natural organic matter (nom) adsorption to multi-walled carbon nanotubes:effect of nom characteristics and water quality parameters[J]. Environmental Science & Technology, 2008, 42(12):4416-4421.
    [18] ATEIA M, APUL O G, SHIMIZU Y, et al. Elucidating adsorptive fractions of natural organic matter on carbon nanotubes[J]. Environmental Science & Technology, 2017, 51(12):7101-7110.
    [19] ZHANG D, PAN B, COOK R L, et al. Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures[J]. Environmental Pollution, 2015, 196:292-299.
    [20] WANG X L, SHU L, WANG Y Q, et al. Sorption of peat humic acids to multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2011, 45(21):9276-9283.
    [21] LIN D H, LIU N, YANG K, et al. Different stabilities of multiwalled carbon nanotubes in fresh surface water samples[J]. Environmental Pollution, 2010, 158(5):1270-1274.
    [22] ZHOU X Z, SHU L, ZHAO H B, et al. Suspending multi-walled carbon nanotubes by humic acids from a peat soil[J]. Environmental Science & Technology, 2012, 46(7):3891-3897.
    [23] LU C, SU F S. Adsorption of natural organic matter by carbon nanotubes[J]. Separation & Purification Technology, 2007, 58(1):113-121.
    [24] SMITH B, WEPASNICK K, SCHROTE K E, et al. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes:A structureproperty relationship[J]. Langmuir, 2009, 25(17):9767-9776.
    [25] LIN D H, XING B S. Adsorption of phenolic compounds by carbon nanotubes:Role of aromaticity and substitution of hydroxyl groups[J]. Environmental Science & Technology, 2008, 42(19):7254-7259.
    [26] TANG Z, ZHAO X L, ZHAO T H, et al. Magnetic nanoparticles interaction with humic acid:In the presence of surfactants[J]. Environmental Science & Technology, 2016, 50(16):8640-8648.
    [27] HASSANI A, KHATAEE A, KARACA S, et al. Adsorption of two cationic textile dyes from water with modified nanoclay:A comparative study by using central composite design[J]. Journal of Environmental Chemical Engineering, 2015, 3(4):2738-2749.
    [28] KARACA S, GÜRSESA, AÇıŞLıÖ, et al. Modeling of adsorption isotherms and kinetics of Remazol Red RB adsorption from aqueous solution by modified clay[J]. Desalination and Water Treatment,2013, 51:2726-2739.
    [29] CHUNG H K, KIM W H, PARK J, et al. Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent[J]. Journal of Industrial and Engineering Chemistry, 2015, 28:241-246.
    [30] 张文娟, 李颖, 郭金家, 等. 腐殖酸表面增强拉曼光谱实验研究[J]. 光谱学与光谱分析, 2013, 32(5):99-102.

    ZHANG W J, LI Y, GUO J J, et al. The investigation of humic acid by surface-enhanced raman spectroscopy[J].Spectroscopy and Spectral Analysis, 2013, 32(5):99-102(in Chinese).

    [31] MARTiNEZMT, CALLEJAS M A, BENITO A M, et al. Sensitivity of single wall carbon nanotubes to oxidative processing:Structural modification, intercalation and functionalisation[J]. Carbon, 2003, 41(12):2247-2256.
    [32] QIAN W Z, WEI F, LIU T, et al. What causes the carbon nanotubes collapse in a chemical vapor deposition process[J]. The Journal of Chemical Physics, 2003, 118(2):878-882.
  • 加载中
计量
  • 文章访问数:  2075
  • HTML全文浏览数:  2075
  • PDF下载数:  110
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-10
方梦园, 赵天慧, 赵晓丽, 汤智, 武迪, 吴丰昌. 碳纳米管对腐殖酸的吸附及其环境意义[J]. 环境化学, 2020, (10): 2897-2906. doi: 10.7524/j.issn.0254-6108.2019111002
引用本文: 方梦园, 赵天慧, 赵晓丽, 汤智, 武迪, 吴丰昌. 碳纳米管对腐殖酸的吸附及其环境意义[J]. 环境化学, 2020, (10): 2897-2906. doi: 10.7524/j.issn.0254-6108.2019111002
FANG Mengyuan, ZHAO Tianhui, ZHAO Xiaoli, TANG Zhi, WU Di, WU Fengchang. Effect of humic acid on adsorption and sedimentation of carboxylic multi-walled carbon nanotubes with different diameters[J]. Environmental Chemistry, 2020, (10): 2897-2906. doi: 10.7524/j.issn.0254-6108.2019111002
Citation: FANG Mengyuan, ZHAO Tianhui, ZHAO Xiaoli, TANG Zhi, WU Di, WU Fengchang. Effect of humic acid on adsorption and sedimentation of carboxylic multi-walled carbon nanotubes with different diameters[J]. Environmental Chemistry, 2020, (10): 2897-2906. doi: 10.7524/j.issn.0254-6108.2019111002

碳纳米管对腐殖酸的吸附及其环境意义

    通讯作者: 汤智, E-mail: tzwork@hotmail.com
  • 1. 昆明理工大学环境科学与工程学院, 昆明, 650500;
  • 2. 中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京, 100012
基金项目:

国家杰出青年科学基金(41925031)和国家自然科学基金(重大项目)(41991315)资助.

摘要: 纳米材料的水环境行为受自身理化性质和水体理化性质的影响.模拟实际水环境条件下不同纳米材料的吸附、聚沉行为对理解纳米材料的潜在生态风险具有重要意义.本研究以管径为4—6 nm(MWNTs-1)和10—20 nm(MWNTs-2)的羧基化多壁碳纳米管(MWNTs-COOH)为研究对象,系统研究了腐殖酸(HA)在MWNTs-COOH表面的吸附特征,并利用拉曼光谱对MWNTs-COOH吸附HA前后的变化进行了表征.结果表明,HA在MWNTs-1和MWNTs-2表面的最大吸附量分别为139.6 mg·g-1和101.2 mg·g-1,且随pH增加而降低;HA在MWNTs-COOH表面的吸附在前24 h增长较快,72 h达到吸附平衡;HA对MWNTs-COOH在溶液中的悬浮/沉降性能具有显著影响;管径更小、比表面积更大的MWNTs-1碳堆积结构更紊乱,缺陷更多,HA的吸附会覆盖MWNTs-COOH表面的缺陷.本研究有助于更好的掌握不同形貌纳米材料在实际水体环境中迁移、转化、归趋等环境行为,为科学评估纳米材料潜在生态危害提供理论依据.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回